Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

W. Kudzi, A. Dodoo, Jeremy Mills

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies. Methods: Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients. Results: We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). CYP3A4*1B, CYP3A5*3 and CYP3A5*6 alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. CYP3A5*1/CYP3A5*1 and CYP3A5*1/CYP3A5*3 genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin. Conclusion: A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders.
Original languageEnglish
Pages (from-to)111
Number of pages1
JournalBMC Medical Genetics
Volume11
DOIs
Publication statusPublished - 2010

Fingerprint

Dive into the research topics of 'Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?'. Together they form a unique fingerprint.

Cite this