TY - JOUR
T1 - Genome sequence, proteome profile, and identification of a multiprotein reductive dehalogenase complex in Dehalogenimonas alkenigignens strain BRE15M
AU - Trueba-Santiso, Alba
AU - Wasmund, Kenneth
AU - Soder-Walz, Jesica M.
AU - Marco-Urrea, Ernest
AU - Adrian, Lorenz
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Bacteria of the genus Dehalogenimonas respire with vicinally halogenated alkanes via dihaloelimination. We aimed to describe involved proteins and their supermolecular organization. Metagenomic sequencing of a Dehalogenimonas-containing culture resulted in a 1.65 Mbp draft genome of Dehalogenimonas alkenigignens strain BRE15M. It contained 31 full-length reductive dehalogenase homologous genes (rdhA), but only eight had cognate rdhB gene coding for membrane-anchoring proteins. Shotgun proteomics of cells grown with 1,2-dichloropropane as an electron acceptor identified 1152 proteins representing more than 60% of the total proteome. Ten RdhA proteins were detected, including a DcpA ortholog, which was the strongest expressed RdhA. Blue native gel electrophoresis (BNE) demonstrating maximum activity was localized in a protein complex of 146-242 kDa. Protein mass spectrometry revealed the presence of DcpA, its membrane-anchoring protein DcpB, two hydrogen uptake hydrogenase subunits (HupL and HupS), an iron-sulfur protein (HupX), and subunits of a redox protein with a molybdopterin-binding motif (OmeA and OmeB) in the complex. BNE after protein solubilization with different detergent concentrations revealed no evidence for an interaction between the putative respiratory electron input module (HupLS) and the OmeA/OmeB/HupX module. All detected RdhAs comigrated with the organohalide respiration complex. Based on genomic and proteomic analysis, we propose quinone-independent respiration in Dehalogenimonas.
AB - Bacteria of the genus Dehalogenimonas respire with vicinally halogenated alkanes via dihaloelimination. We aimed to describe involved proteins and their supermolecular organization. Metagenomic sequencing of a Dehalogenimonas-containing culture resulted in a 1.65 Mbp draft genome of Dehalogenimonas alkenigignens strain BRE15M. It contained 31 full-length reductive dehalogenase homologous genes (rdhA), but only eight had cognate rdhB gene coding for membrane-anchoring proteins. Shotgun proteomics of cells grown with 1,2-dichloropropane as an electron acceptor identified 1152 proteins representing more than 60% of the total proteome. Ten RdhA proteins were detected, including a DcpA ortholog, which was the strongest expressed RdhA. Blue native gel electrophoresis (BNE) demonstrating maximum activity was localized in a protein complex of 146-242 kDa. Protein mass spectrometry revealed the presence of DcpA, its membrane-anchoring protein DcpB, two hydrogen uptake hydrogenase subunits (HupL and HupS), an iron-sulfur protein (HupX), and subunits of a redox protein with a molybdopterin-binding motif (OmeA and OmeB) in the complex. BNE after protein solubilization with different detergent concentrations revealed no evidence for an interaction between the putative respiratory electron input module (HupLS) and the OmeA/OmeB/HupX module. All detected RdhAs comigrated with the organohalide respiration complex. Based on genomic and proteomic analysis, we propose quinone-independent respiration in Dehalogenimonas.
KW - 1,2-dichloropropane
KW - Dehalococcoidia
KW - Dehalogenimonas alkenigignens strain BRE15M
KW - dihaloelimination
KW - genome sequencing
KW - organohalide respiration
KW - proteome profiling
UR - http://www.scopus.com/inward/record.url?scp=85099325374&partnerID=8YFLogxK
U2 - 10.1021/acs.jproteome.0c00569
DO - 10.1021/acs.jproteome.0c00569
M3 - Article
C2 - 32975419
AN - SCOPUS:85099325374
SN - 1535-3893
VL - 20
SP - 613
EP - 623
JO - Journal of Proteome Research
JF - Journal of Proteome Research
IS - 1
ER -