Abstract
We develop and apply a fully covariant 1 + 3 electromagnetic analogy for gravity. The free gravitational field is covariantly characterized by the Weyl gravito-electric and gravito-magnetic spatial tensor fields, whose dynamical equations are the Bianchi identities. Using a covariant generalization of spatial vector algebra and calculus to spatial tensor fields, we exhibit the covariant analogy between the tensor Bianchi equations and the vector Maxwell equations. We identify gravitational source terms, couplings and potentials with and without electromagnetic analogues. The nonlinear vacuum Bianchi equations are shown to be invariant under covariant spatial duality rotation of the gravito-electric and gravito-magnetic tensor fields. We construct the super-energy density and super-Poynting vector of the gravitational field as natural U(1) group invariants, and derive their super-energy conservation equation. A covariant approach to gravito-electric/magnetic monopoles is also presented.
Original language | English |
---|---|
Pages (from-to) | 705-717 |
Journal | Classical and Quantum Gravity |
Volume | 15 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 1998 |