TY - JOUR
T1 - GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2
AU - LIGO Scientific Collaboration
AU - Virgo Collaboration
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adams, T.
AU - Addesso, P.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Afrough, M.
AU - Agarwal, B.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Allen, B.
AU - Allen, G.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amato, A.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Antier, S.
AU - Appert, S.
AU - Arai, K.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arnaud, N.
AU - Arun, K. G.
AU - Ascenzi, S.
AU - Ashton, G.
AU - Ast, M.
AU - Aston, S. M.
AU - Astone, P.
AU - Aufmuth, P.
AU - Aulbert, C.
AU - Aultoneal, K.
AU - Avila-alvarez, A.
AU - Babak, S.
AU - Bacon, P.
AU - Bader, M. K. M.
AU - Bae, S.
AU - Baker, P. T.
AU - Lundgren, A. P.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2 + 8.4− 6.0 M⊙ and 19.4+5.3− 5.9 M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ eff =− 0.12+.21− 0.30. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 88 0+ 450−390 Mpc corresponding to a redshift of z=0.18+0.08− 0.07. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10−23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity.
AB - We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2 + 8.4− 6.0 M⊙ and 19.4+5.3− 5.9 M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ eff =− 0.12+.21− 0.30. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 88 0+ 450−390 Mpc corresponding to a redshift of z=0.18+0.08− 0.07. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7×10−23 eV/c2. In all cases, we find that GW170104 is consistent with general relativity.
KW - RCUK
KW - STFC
U2 - 10.1103/PhysRevLett.118.221101
DO - 10.1103/PhysRevLett.118.221101
M3 - Article
SN - 0031-9007
VL - 118
JO - Physical Review Letters
JF - Physical Review Letters
IS - 22
M1 - 221101
ER -