High-resolution X-ray tomographic workflow to investigate the stress distribution in vitreous enamel steels

Alberto Sensini, Gregorio Pisaneschi, Davide Cocchi, Alex Kao, Gianluca Tozzi, Andrea Zucchelli

Research output: Contribution to journalArticlepeer-review

Abstract

Vitreous enamel steels (VES) are a class of metal-ceramic composite materials realized with a low carbon steel basement coated by an enamel layer. During the firing phase to adhere the enamel to the metal, several gas bubbles remain entrapped inside the enamel volume modifying its internal structure. In this work high-resolution X-ray computed tomography (micro-CT) was used to investigate these composite materials. The micro-CT reconstructions enabled a detailed investigation of VES minimizing the metal artifacts. The tomograms were used to develop finite element models (FEM) of VES by means of a representative volume element (RVE) to evaluate the thermal residual stresses caused by the manufacturing process, as well as the effect of the 3D bubbles distribution on the internal stress patterns after the thermic gradient. The promising results from this study have the potential to inform further research on such composite materials by optimizing manufacturing processes for targeted applications.
Original languageEnglish
JournalJournal of Microscopy
Early online date16 Jan 2021
DOIs
Publication statusEarly online - 16 Jan 2021

Fingerprint

Dive into the research topics of 'High-resolution X-ray tomographic workflow to investigate the stress distribution in vitreous enamel steels'. Together they form a unique fingerprint.

Cite this