TY - JOUR
T1 - Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
AU - Schneider, Robert
AU - Bannister, Andrew J.
AU - Myers, Fiona A.
AU - Thorne, Alan W.
AU - Crane-Robinson, Colyn
AU - Kouzarides, Tony
PY - 2004
Y1 - 2004
N2 - Lysine residues within histones can be mono-, di - or tri-methylated. In Saccharomyces cerevisiae tri-methylation of Lys 4 of histone H3 (K4/H3) correlates with transcriptional activity, but little is known about this methylation state in higher eukaryotes. Here, we examine the K4/H3 methylation pattern at the promoter and transcribed region of metazoan genes. We analysed chicken genes that are developmentally regulated, constitutively active or inactive. We found that the pattern of K4/H3 methylation shows similarities to S. cerevisiae. Tri-methyl K4/H3 peaks in the 5' transcribed region and active genes can be discriminated by high levels of tri-methyl K4/H3 compared with inactive genes. However, our results also identify clear differences compared to yeast, as significant levels of K4/H3 methylation are present on inactive genes within the -globin locus, implicating this modification in maintaining a 'poised' chromatin state. In addition, K4/H3 di-methylation is not genome-wide and di-methylation is not uniformly distributed throughout the transcribed region. These results indicate that in metazoa, di- and tri-methylation of K4/H3 is linked to active transcription and that significant differences exist in the genome-wide methylation pattern as compared with S. cerevisiae.
AB - Lysine residues within histones can be mono-, di - or tri-methylated. In Saccharomyces cerevisiae tri-methylation of Lys 4 of histone H3 (K4/H3) correlates with transcriptional activity, but little is known about this methylation state in higher eukaryotes. Here, we examine the K4/H3 methylation pattern at the promoter and transcribed region of metazoan genes. We analysed chicken genes that are developmentally regulated, constitutively active or inactive. We found that the pattern of K4/H3 methylation shows similarities to S. cerevisiae. Tri-methyl K4/H3 peaks in the 5' transcribed region and active genes can be discriminated by high levels of tri-methyl K4/H3 compared with inactive genes. However, our results also identify clear differences compared to yeast, as significant levels of K4/H3 methylation are present on inactive genes within the -globin locus, implicating this modification in maintaining a 'poised' chromatin state. In addition, K4/H3 di-methylation is not genome-wide and di-methylation is not uniformly distributed throughout the transcribed region. These results indicate that in metazoa, di- and tri-methylation of K4/H3 is linked to active transcription and that significant differences exist in the genome-wide methylation pattern as compared with S. cerevisiae.
U2 - 10.1038/ncb1076
DO - 10.1038/ncb1076
M3 - Article
SN - 1465-7392
VL - 6
SP - 73
EP - 77
JO - Nature Cell Biology
JF - Nature Cell Biology
IS - 1
ER -