Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines

Q. Wu, Joy Watts, K. Sowers, H. May

Research output: Contribution to journalArticlepeer-review

Abstract

A microorganism whose growth is linked to the dechlorination of polychlorinated biphenyls (PCBs) with doubly flanked chlorines was identified. Identification was made by reductive analysis of community 16S ribosomal DNA (rDNA) sequences from a culture enriched in the presence of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB), which was dechlorinated at the para position. Denaturing gradient gel electrophoresis (DGGE) analysis of total 16S rDNA extracted from the culture led to identification of three operational taxonomic units (OTUs 1, 2, and 3). OTU 1 was always detected when 2,3,4,5-CB or other congeners with doubly flanked chlorines were present and dechlorinated. Only OTUs 2 and 3 were detected in the absence of PCBs and when other PCBs (i.e., PCBs lacking doubly flanked chlorines) were not dechlorinated. Partial sequences of OTUs 2 and 3 exhibited 98.2% similarity to the sequence of “Desulfovibrio caledoniensis” (accession no. DCU53465). A sulfate-reducing vibrio isolated from the culture generated OTUs 2 and 3. This organism could not dechlorinate 2,3,4,5-CB. From these results we concluded that OTU 1 represents the dechlorinating bacterium growing in a coculture with a Desulfovibrio sp. The 16S rDNA sequence of OTU 1 is most similar to the 16S rDNA sequence of bacterium o-17 (89% similarity), an ortho-PCB-dechlorinating bacterium. The PCB dechlorinator, designated bacterium DF-1, reductively dechlorinates congeners with doubly flanked chlorines when it is supplied with formate or H2-CO2 (80:20).
Original languageEnglish
Pages (from-to)807-812
Number of pages6
JournalApplied and Environmental Microbiology
Volume68
Issue number2
DOIs
Publication statusPublished - 2001

Fingerprint

Dive into the research topics of 'Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines'. Together they form a unique fingerprint.

Cite this