Identification of novel inhibitors of Escherichia coli DNA ligase

Arqam Mohamad Azhar Msbah Alomari, Robert Michael Nicholas Gowland, Callum Southwood, Jak Barrow, Zoe Bentley, Jashel Calvin-Nelson, Alice Kaminski, Matthew LeFevre, Anastasia Callaghan, Helen Vincent, Darren Gowers

Research output: Contribution to journalArticlepeer-review

8 Downloads (Pure)

Abstract

Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3´ hydroxyl and a 5´ phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11-2600 μM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.
Original languageEnglish
Article number2508
Number of pages14
JournalMolecules
Volume26
Issue number9
DOIs
Publication statusPublished - 25 Apr 2021

Keywords

  • RCUK
  • BBSRC
  • BB/J016179/1

Fingerprint

Dive into the research topics of 'Identification of novel inhibitors of <i>Escherichia coli </i>DNA ligase'. Together they form a unique fingerprint.

Cite this