@inproceedings{e98650c2f6d5473d8516432c0981321d,
title = "Improving wrist angle recognition accuracy under different load conditions",
abstract = "The wrist angle estimation based on surface electromyography (sEMG) signals plays an important role in the sEMG application. This paper confirms that the accuracy of the wrist angle recognition decreases with the increase of the wrist load by the changes of the sEMG features in different loads. To address the above problem, this paper proposes a combined feature, integrating frequency-domain and time-domain features, to improve the recognition accuracy, which has been demonstrated by comparative experimental results.",
author = "Jinrong Tian and Chengcheng Li and Cuiqiao Li and Gongfa Li and Dalin Zhou and Zhaojie Ju",
year = "2020",
month = apr,
day = "16",
doi = "10.1109/CYBER46603.2019.9066741",
language = "English",
isbn = "978-1-7281-0771-4",
series = "2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "1267--1272",
booktitle = "Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)",
address = "United States",
note = "9th IEEE International Conference on CYBER Technology in Automation, Control, and Intelligent Systems ; Conference date: 29-07-2019 Through 02-08-2019",
}