TY - JOUR
T1 - Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia
AU - Dawson, Mark A.
AU - Prinjha, Rab K.
AU - Dittmann, Antje
AU - Giotopoulos, George
AU - Bantscheff, Marcus
AU - Chan, Wai-in
AU - Robson, Samuel C.
AU - Chung, Chun-wa
AU - Hopf, Carsten
AU - Savitski, Mikhail M.
AU - Huthmacher, Carola
AU - Gudgin, Emma
AU - Lugo, Dave
AU - Beinke, Soren
AU - Chapman, Trevor D.
AU - Roberts, Emma J.
AU - Soden, Peter E.
AU - Auger, Kurt R.
AU - Mirguet, Olivier
AU - Doehner, Konstanze
AU - Delwel, Ruud
AU - Burnett, Alan K.
AU - Jeffrey, Phillip
AU - Drewes, Gerard
AU - Lee, Kevin
AU - Huntly, Brian J. P.
AU - Kouzarides, Tony
PY - 2011/10/2
Y1 - 2011/10/2
N2 - Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies1. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction2, 3. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC2, 3 and the polymerase-associated factor complex (PAFc)4, 5, are associated with the BET family of acetyl-lysine recognizing, chromatin ‘adaptor’ proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL–AF9 and human MLL–AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.
AB - Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies1. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction2, 3. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC2, 3 and the polymerase-associated factor complex (PAFc)4, 5, are associated with the BET family of acetyl-lysine recognizing, chromatin ‘adaptor’ proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL–AF9 and human MLL–AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.
U2 - 10.1038/nature10509
DO - 10.1038/nature10509
M3 - Letter
SN - 0028-0836
VL - 478
SP - 529
EP - 533
JO - Nature
JF - Nature
IS - 7370
ER -