Abstract
We report on the integration of an antiferromagnetic Heusler compound acting as a pinning layer into magnetic tunneling junctions (MTJs). The antiferromagnet Ru2MnGe is used to pin the magnetization direction of a ferromagnetic Fe layer in MgO based thin film tunneling magnetoresistance stacks. The samples were prepared using magnetron co-sputtering. We investigate the structural properties by X-ray diffraction and reflection, as well as atomic force and high-resolution transmission electron microscopy. We find an excellent crystal growth quality with a low interface roughnesses of 1-3 Å, which is crucial for the preparation of working tunneling barriers. Using Fe as a ferromagnetic electrode material, we prepared magnetic tunneling junctions and measured the magnetoresistance. We find a sizeable maximum magnetoresistance value of 135%, which is comparable to other common Fe based MTJ systems.
Original language | English |
---|---|
Article number | 032406 |
Journal | Applied Physics Letters |
Volume | 111 |
Issue number | 3 |
DOIs | |
Publication status | Published - 18 Jul 2017 |
Keywords
- cond-mat.mtrl-sci