Abstract
This paper evaluates the performance of a rainfall forecasting model. In this paper Artificial Neural Network (ANN) and Fuzzy C-Means (FCM) clustering algorithm are combined and used to forecast short-term localized rainfall in tropical climate. State forecast (raining or not raining) and value forecast (rain intensity) are tested using a number of trained networks. Different types of ANN structured were trained with a combination of multilayer perceptron with back propagation network. Levenberg-Marquardt, Bayesian Regularization and Scaled Conjugate Gradient training algorithm are used in the network training. Each neurons uses linear, logistic sigmoid and hyperbolic tangent sigmoid as transfer function. Input parameter preliminary analysis, data cleaning and FCM clustering were used to prepare input data for the ANN forecast model. Meteorological data such as atmospheric pressure, temperature, dew point, humidity and wind speed have been used as input parameters. The predicted rainfall forecast for 1 to 6 hour ahead are compared and analyzed. 1 hour ahead for state and value forecast yield high accuracy. Result shows that, the combined of FCM-ANN forecast model produces better accuracy compared to a basic ANN forecast model.
Original language | English |
---|---|
Title of host publication | Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 |
Editors | Yaxin Bi, Supriya Kapoor, Rahul Bhatia |
Publisher | Springer |
Pages | 499-516 |
Number of pages | 18 |
Volume | 2 |
ISBN (Electronic) | 978-3-319-56991-8 |
ISBN (Print) | 978-3-319-56990-1 |
DOIs | |
Publication status | Published - 23 Aug 2017 |
Event | SAI Intelligent Systems Conference 2016 - London, United Kingdom Duration: 21 Sept 2016 → 22 Sept 2016 http://saiconference.com/IntelliSys2016 |
Publication series
Name | Lecture Notes in Networks and Systems |
---|---|
Publisher | Springer |
Volume | 16 |
ISSN (Print) | 2367-3370 |
Conference
Conference | SAI Intelligent Systems Conference 2016 |
---|---|
Abbreviated title | IntelliSys 2016 |
Country/Territory | United Kingdom |
City | London |
Period | 21/09/16 → 22/09/16 |
Internet address |
Keywords
- artificial neural network
- fuzzy c-means
- rainfall forecast
- rainfall prediction
- neural network
- tropical climate