TY - JOUR
T1 - Intersection of brain development and paediatric diffuse midline gliomas: potential role of microenvironment in tumour growth
AU - Loveson, Katie
AU - Fillmore, Helen
PY - 2018/11/16
Y1 - 2018/11/16
N2 - Diffuse intrinsic pontine glioma (DIPG) is a devastating and incurable paediatric brain tumour with a median overall survival of 9 months. Until recently, DIPGs were treated similarly to adult gliomas, but due to the advancement in molecular and imaging technologies, our understanding of these tumours has increased dramatically. While extensive research is being undertaken to determine the function of the molecular aberrations in DIPG, there are significant gaps in understanding the biology and the influence of the tumour microenvironment on DIPG growth, specifically in regards to the developing pons. The precise orchestration and co-ordination of the development of the brain, the most complex organ in the body, is still not fully understood. Herein, we present a brief overview of brainstem development, discuss the developing microenvironment in terms of DIPG growth, and provide a basis for the need for studies focused on bridging pontine development and DIPG microenvironment. Conducting investigations in the context of a developing brain will lead to a better understanding of the role of the tumour microenvironment and will help lead to identification of drivers of tumour growth and therapeutic resistance.
AB - Diffuse intrinsic pontine glioma (DIPG) is a devastating and incurable paediatric brain tumour with a median overall survival of 9 months. Until recently, DIPGs were treated similarly to adult gliomas, but due to the advancement in molecular and imaging technologies, our understanding of these tumours has increased dramatically. While extensive research is being undertaken to determine the function of the molecular aberrations in DIPG, there are significant gaps in understanding the biology and the influence of the tumour microenvironment on DIPG growth, specifically in regards to the developing pons. The precise orchestration and co-ordination of the development of the brain, the most complex organ in the body, is still not fully understood. Herein, we present a brief overview of brainstem development, discuss the developing microenvironment in terms of DIPG growth, and provide a basis for the need for studies focused on bridging pontine development and DIPG microenvironment. Conducting investigations in the context of a developing brain will lead to a better understanding of the role of the tumour microenvironment and will help lead to identification of drivers of tumour growth and therapeutic resistance.
U2 - 10.3390/brainsci8110200
DO - 10.3390/brainsci8110200
M3 - Article
SN - 2076-3425
VL - 8
JO - Brain Sciences
JF - Brain Sciences
IS - 11
M1 - 200
ER -