IoT vulnerability data crawling and analysis

Stavros Shiaeles, Nicholas Kolokotronis, Emanuele Bellini

Research output: Chapter in Book/Report/Conference proceedingConference contribution

498 Downloads (Pure)


Internet of Things (IoT) is a whole new ecosystem comprised of heterogeneous connected devices -i.e. computers, laptops, smart-phones and tablets as well as embedded devices and sensors-that communicate to deliver capabilities making our living, cities, transport, energy, and many other areas more intelligent. The main concerns raised from the IoT ecosystem are the devices poor support for patching/updating and the poor on-board computational power. A number of issues stem from this: inherent vulnerabilities and the inability to detect and defend against external attacks. Also, due to the nature of their operation, the devices tend to be rather open to communication, which makes attacks easy to spread once reaching a network. The aim of this research is to investigate if it is possible to extract useful results regarding attacks' trends and be able to predict them, before it is too late, by crawling Deep/Dark and Surface web. The results of this work show that is possible to find the trend and be able to act proactively in order to protect the IoT ecosystem.

Original languageEnglish
Title of host publication2019 IEEE World Congress on Services (SERVICES)
EditorsCarl K. Chang, Peter Chen, Michael Goul, Katsunori Oyama, Stephan Reiff-Marganiec, Yanchun Sun, Shangguang Wang, Zhongjie Wang
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)978-1-7281-3851-0
ISBN (Print)978-1-7281-3852-7
Publication statusPublished - 29 Aug 2019
Event2019 IEEE World Congress on Services - Milan, Italy
Duration: 8 Jul 201913 Jul 2019

Publication series

Name2019 IEEE World Congress on Services (SERVICES)
ISSN (Print)2378-3818
ISSN (Electronic)2642-939X


Conference2019 IEEE World Congress on Services
Abbreviated titleSERVICES 2019


  • Crawling
  • Dark web
  • Deep web
  • IoT
  • Trends
  • Vulnerabilities


Dive into the research topics of 'IoT vulnerability data crawling and analysis'. Together they form a unique fingerprint.

Cite this