Abstract
The complex geometry of cancellous bone tissue makes it difficult to generate finite element (FE) models. Only a few studies investigated the convergence behavior at the tissue scale using Cartesian meshes. However, these studies were not conducted according to an ideal patch test and the postelastic convergence behavior was not reported. In this study, the third principal strain and stress, and the displacement obtained from human micro finite element (microFE) models of lower resolutions were compared against the model of 19.5 μm as a reference, representing the original spatial resolution of microCT data. Uni-axial compression simulations using both linear-elastic and nonlinear constitutive equations were performed. The results showed a decrease in percentage difference in all three values as the element size decreased, with the displacement converging the fastest among the three. Simulations carried out using a nonlinear constitutive equation however, failed to show convergence for the third principal strains and stresses. It was concluded that at the tissue level, Cartesian meshes of human cancellous bone tissue were able to reach a converged solution in all three parameters investigated for linear simulation and only in displacement for nonlinear simulation. These parameters can be used as references in the future for studies in local biomechanical behavior of human cancellous bone tissues with linear simulation. The convergence behavior for human cancellous bone tissue using nonlinear constitutive equations needs further investigation.
Original language | English |
---|---|
Article number | 101013 |
Pages (from-to) | 1-7 |
Number of pages | 7 |
Journal | Journal of Biomechanical Engineering |
Volume | 136 |
Issue number | 10 |
Early online date | 14 Aug 2014 |
DOIs | |
Publication status | Published - 1 Oct 2014 |