Abstract
This paper proposes a new concept of decision analysis based on a multiple criteria decision making (MCDM) process. This is achieved through the provision of a systematic and generic methodology for the implementation of design improvements based on experience of past failures. This is illustrated in the form of a case study identifying the changes made to Concorde after the 2000 accident. The proposed model uses the analytic hierarchy process (AHP) mathematical model as a backbone and integrates elements of a modified failure modes and effects analysis (FMEA). The AHP has proven to be an invaluable tool for decision support since it allows a fully documented and transparent decision to be made with full accountability. In addition, it facilitates the task of justifying improvement decisions.
The paper is divided as follows: the first section presents an outline of the background to the Concorde accident and its history of related (non-catastrophic) malfunctions. The AHP methodology and its mathematical representation are then presented with the integrated FMEA applied to the Concorde accident. The case study arrives at the same conclusion as engineers working on Concorde after the accident: that the aircraft may fly again if the lining of the fuel tanks are modified.
Original language | English |
---|---|
Pages (from-to) | 207-216 |
Number of pages | 10 |
Journal | Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering |
Volume | 217 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2003 |