Light curve classification with recurrent neural networks for GOTO: dealing with imbalanced data

U. F. Burhanudin, J. R. Maund, T. Killestein, K. Ackley, M. J. Dyer, J. Lyman, K. Ulaczyk, R. Cutter, Y. -L. Mong, D. Steeghs, D. K. Galloway, V. Dhillon, P. O'Brien, G. Ramsay, K. Noysena, R. Kotak, R. P. Breton, L. Nuttall, E. Pallé, D. PollaccoE. Thrane, S. Awiphan, P. Chote, A. Chrimes, E. Daw, C. Duffy, R. Eyles-Ferris, B. Gompertz, T. Heikkilä, P. Irawati, M. R. Kennedy, A. Levan, S. Littlefair, L. Makrygianni, D. Mata-Sánchez, S. Mattila, J. McCormac, D. Mkrtichian, J. Mullaney, U. Sawangwit, E. Stanway, R. Starling, P. Strøm, S. Tooke, K. Wiersema

Research output: Contribution to journalArticlepeer-review

94 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Light curve classification with recurrent neural networks for GOTO: dealing with imbalanced data'. Together they form a unique fingerprint.

INIS

Computer Science

Physics