TY - JOUR
T1 - Machine learning enabled early detection of breast cancer by structural analysis of mammograms
AU - Mehmood, Mavra
AU - Ayub, Ember
AU - Ahmad, Fahad
AU - Alruwaili, Madallah
AU - Alrowaili, Ziyad A.
AU - Alanazi, Saad
AU - Humayun, Mamoona
AU - Rizwan, Muhammad
AU - Naseem, Shahid
AU - Alyas, Tahir
PY - 2021/1/12
Y1 - 2021/1/12
N2 - Clinical image processing plays a significant role in healthcare systems and is currently a widely used methodology. In carcinogenic diseases, time is crucial; thus, an image’s accurate analysis can help treat disease at an early stage. Ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) are common types of malignancies that affect both women and men. The number of cases of DCIS and LCIS has increased every year since 2002, while it still takes a considerable amount of time to recommend a controlling technique. Image processing is a powerful technique to analyze preprocessed images to retrieve useful information by using some remarkable processing operations. In this paper, we used a dataset from the Mammographic Image Analysis Society and MATLAB 2019b software from MathWorks to simulate and extract our results. In this proposed study, mammograms are primarily used to diagnose, more precisely, the breast’s tumor component. The detection of DCIS and LCIS on breast mammograms is done by preprocessing the images using contrast-limited adaptive histogram equalization. The resulting images’ tumor portions are then isolated by a segmentation process, such as threshold detection. Furthermore, morphological operations, such as erosion and dilation, are applied to the images, then a gray-level co-occurrence matrix texture features, Harlick texture features, and shape features are extracted from the regions of interest. For classification purposes, a support vector machine (SVM) classifier is used to categorize normal and abnormal patterns. Finally, the adaptive neuro-fuzzy inference system is deployed for the amputation of fuzziness due to overlapping features of patterns within the images, and the exact categorization of prior patterns is gained through the SVM. Early detection of DCIS and LCIS can save lives and help physicians and surgeons todiagnose and treat these diseases. Substantial results are obtained through cubic support vector machine (CSVM), respectively, showing 98.95% and 98.01% accuracies for normal and abnormal mammograms. Through ANFIS, promising results of mean square error (MSE) 0.01866, 0.18397, and 0.19640 for DCIS and LCIS differentiation during the training, testing, and checking phases.
AB - Clinical image processing plays a significant role in healthcare systems and is currently a widely used methodology. In carcinogenic diseases, time is crucial; thus, an image’s accurate analysis can help treat disease at an early stage. Ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) are common types of malignancies that affect both women and men. The number of cases of DCIS and LCIS has increased every year since 2002, while it still takes a considerable amount of time to recommend a controlling technique. Image processing is a powerful technique to analyze preprocessed images to retrieve useful information by using some remarkable processing operations. In this paper, we used a dataset from the Mammographic Image Analysis Society and MATLAB 2019b software from MathWorks to simulate and extract our results. In this proposed study, mammograms are primarily used to diagnose, more precisely, the breast’s tumor component. The detection of DCIS and LCIS on breast mammograms is done by preprocessing the images using contrast-limited adaptive histogram equalization. The resulting images’ tumor portions are then isolated by a segmentation process, such as threshold detection. Furthermore, morphological operations, such as erosion and dilation, are applied to the images, then a gray-level co-occurrence matrix texture features, Harlick texture features, and shape features are extracted from the regions of interest. For classification purposes, a support vector machine (SVM) classifier is used to categorize normal and abnormal patterns. Finally, the adaptive neuro-fuzzy inference system is deployed for the amputation of fuzziness due to overlapping features of patterns within the images, and the exact categorization of prior patterns is gained through the SVM. Early detection of DCIS and LCIS can save lives and help physicians and surgeons todiagnose and treat these diseases. Substantial results are obtained through cubic support vector machine (CSVM), respectively, showing 98.95% and 98.01% accuracies for normal and abnormal mammograms. Through ANFIS, promising results of mean square error (MSE) 0.01866, 0.18397, and 0.19640 for DCIS and LCIS differentiation during the training, testing, and checking phases.
KW - image processing
KW - tumor
KW - dilation
KW - erosion
KW - machine learning
KW - classifiaction
KW - support vector machine
KW - adaptive neuro-fuzzy inference system
U2 - 10.32604/cmc.2021.013774
DO - 10.32604/cmc.2021.013774
M3 - Article
SN - 1546-2218
VL - 67
SP - 641
EP - 657
JO - Computers, Materials and Continua
JF - Computers, Materials and Continua
IS - 1
ER -