Mapping and simulating systematics due to spatially-varying observing conditions in DES Science Verification data

B. Leistedt, H. V. Peiris, F. Elsner, A. Benoit-Lévy, A. Amara, A. H. Bauer, M. R. Becker, C. Bonnett, C. Bruderer, M. T. Busha, M. Carrasco Kind, C. Chang, M. Crocce, L. N. da Costa, E. Gaztanaga, E. M. Huff, O. Lahav, A. Palmese, W. J. Percival, A. RefregierA. J. Ross, E. Rozo, E. S. Rykoff, C. Sánchez, I. Sadeh, I. Sevilla-Noarbe, F. Sobreira, E. Suchyta, M. E. C. Swanson, R. H. Wechsler, F. B. Abdalla, S. Allam, M. Banerji, G. M. Bernstein, R. A. Bernstein, E. Bertin, S. L. Bridle, D. Brooks, E. Buckley-Geer, D. L. Burke, D. Capozzi, A. Carnero Rosell, J. Carretero, C. E. Cunha, C. B. D'Andrea, D. L. DePoy, S. Desai, H. T. Diehl, P. Doel, T. F. Eifler, A. E. Evrard, A. Fausti Neto, B. Flaugher, P. Fosalba, J. Frieman, D. W. Gerdes, D. Gruen, R. A. Gruendl, G. Gutierrez, K. Honscheid, D. J. James, M. Jarvis, S. Kent, K. Kuehn, N. Kuropatkin, T. S. Li, M. Lima, M. A. G. Maia, M. March, J. L. Marshall, P. Martini, P. Melchior, C. J. Miller, R. Miquel, R. C. Nichol, B. Nord, R. Ogando, A. A. Plazas, K. Reil, A. K. Romer, A. Roodman, E. Sanchez, B. Santiago, V. Scarpine, M. Schubnell, R. C. Smith, M. Soares-Santos, G. Tarle, J. Thaler, D. Thomas, V. Vikram, A. R. Walker, W. Wester, Y. Zhang, J. Zuntz

Research output: Contribution to journalArticlepeer-review

72 Downloads (Pure)

Abstract

Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on $N(z)$, the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. The framework presented here is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope (LSST), which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.
Original languageEnglish
Article number24
JournalThe Astrophysical Journal Supplement Series
Volume226
DOIs
Publication statusPublished - 17 Oct 2016

Keywords

  • astro-ph.CO
  • precision cosmology
  • galaxy surveys
  • spatial systematics
  • image simulations
  • RCUK
  • STFC

Fingerprint

Dive into the research topics of 'Mapping and simulating systematics due to spatially-varying observing conditions in DES Science Verification data'. Together they form a unique fingerprint.

Cite this