Marine redox dynamics and biotic response to the mid-Silurian Ireviken Extinction Event in a mid-shelf setting

Yuxuan Wang, Paul B. Wignall, Yijun Xiong, David K. Loydell, Jeffrey Peakall, Jaco H. Baas, Benjamin J.W. Mills, Simon W. Poulton

Research output: Contribution to journalArticlepeer-review

4 Downloads (Pure)


The early Silurian Llandovery–Wenlock boundary interval was marked by significant marine perturbations and biotic turnover, culminating in the Ireviken Extinction Event (IEE) and the Early Sheinwoodian Carbon Isotope Excursion (ESCIE). Here, we apply multiple independent redox proxies to the early Wenlock Buttington section, which was deposited in a mid-shelf location in the Welsh Basin, UK. To account for regional geochemical variability in marine sediments due to factors such as sediment provenance, we first define oxic baseline values for the Welsh basin, utilizing deeper water, well-oxygenated intervals of late Llandovery age. Our approach documents unstable, oscillating redox conditions on the mid shelf at Buttington. We suggest that these dynamic redox fluctuations are likely to relate to changes in the position of the chemocline or a migrating oxygen minimum zone. Benthic biota such as trilobites, brachiopods, bivalves and gastropods appear to have been relatively unaffected by fluctuating oxic-ferruginous conditions, but were more severely impacted by the development of euxinia, highlighting the inhibiting role of toxic sulfides. By contrast, the redox perturbations appear to have placed extreme stress on graptolites, causing many extinction losses regardless of the specific development of euxinia.
Original languageEnglish
Article numberjgs2023-155
JournalJournal of the Geological Society
Early online date8 Apr 2024
Publication statusEarly online - 8 Apr 2024


  • UKRI
  • NERC
  • NE/T008458/1

Cite this