TY - JOUR
T1 - Metamorphic P–T conditions across the Chugach Metamorphic Complex (Alaska)
T2 - a record of focussed exhumation during transpression
AU - Bruand, Emilie
AU - Gasser, Deta
AU - Stüwe, Kurt
N1 - NOTICE: this is the author’s version of a work that was accepted for publication in Lithos. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Lithos, [VOL 190-191, (2014)] DOI 10.1016/j.lithos.2013.12.007
PY - 2014/3/1
Y1 - 2014/3/1
N2 - The Chugach Metamorphic Complex (CMC) is a large high-grade metamorphic complex that developed in the Eocene within the Chugach accretionary complex along the margin of Alaska where subduction is still ongoing. The CMC has a conspicuous asymmetric structure with a migmatitic zone flanked in the north and west by amphibolite facies schists and in the south by a metabasite belt. To the north and south, major, crustal-scale fault zones juxtapose the Chugach terrane against much lower-grade and less-deformed sequences belonging to different terranes. Curiously these crustal-scale structures are known to have largely strike slip motion posing the question as to the nature of the exhumation of the high-grade complex between them. However, P–T conditions which would allow an estimation of the amount of exhumation were lacking for large parts of the complex. This paper presents petrographic descriptions, biotite–garnet thermometry, RSCM thermometry, average P–T calculations and pseudosection modelling from three major across-strike transects covering the complex from west to south-east. Our results reveal that, both temperature and pressure vary substantially across the complex. More specifically, peak metamorphic conditions evolve from 4–7 kbar and ~ 550–650 °C in the northern schist zone to 5–11 kbar and ~ 650–750 °C in the migmatite zone in the south of the complex. The higher pressure estimates in the south of the complex indicate that focussed exhumation must have occurred in this area and was probably initiated by the subduction of a high topographic relief (intra-oceanic arc or ridge subduction) and the accretion of the metabasite belt in the south. Exhumation of the CMC occurred in an overall transpressive strain regime, with strike-slip deformation concentrated along the northern Border Range fault zone and thrusting and exhumation focussed within the southern migmatite zone and splay faults of the Contact fault zone. The T/P ratios in the southern migmatite zone indicate that the thermal perturbation of the migmatites is less than previously inferred. These new results, associated with the structural data and the accretion of a metabasite belt in the south of the complex, seem incompatible with the existing ridge-subduction models.
AB - The Chugach Metamorphic Complex (CMC) is a large high-grade metamorphic complex that developed in the Eocene within the Chugach accretionary complex along the margin of Alaska where subduction is still ongoing. The CMC has a conspicuous asymmetric structure with a migmatitic zone flanked in the north and west by amphibolite facies schists and in the south by a metabasite belt. To the north and south, major, crustal-scale fault zones juxtapose the Chugach terrane against much lower-grade and less-deformed sequences belonging to different terranes. Curiously these crustal-scale structures are known to have largely strike slip motion posing the question as to the nature of the exhumation of the high-grade complex between them. However, P–T conditions which would allow an estimation of the amount of exhumation were lacking for large parts of the complex. This paper presents petrographic descriptions, biotite–garnet thermometry, RSCM thermometry, average P–T calculations and pseudosection modelling from three major across-strike transects covering the complex from west to south-east. Our results reveal that, both temperature and pressure vary substantially across the complex. More specifically, peak metamorphic conditions evolve from 4–7 kbar and ~ 550–650 °C in the northern schist zone to 5–11 kbar and ~ 650–750 °C in the migmatite zone in the south of the complex. The higher pressure estimates in the south of the complex indicate that focussed exhumation must have occurred in this area and was probably initiated by the subduction of a high topographic relief (intra-oceanic arc or ridge subduction) and the accretion of the metabasite belt in the south. Exhumation of the CMC occurred in an overall transpressive strain regime, with strike-slip deformation concentrated along the northern Border Range fault zone and thrusting and exhumation focussed within the southern migmatite zone and splay faults of the Contact fault zone. The T/P ratios in the southern migmatite zone indicate that the thermal perturbation of the migmatites is less than previously inferred. These new results, associated with the structural data and the accretion of a metabasite belt in the south of the complex, seem incompatible with the existing ridge-subduction models.
U2 - 10.1016/j.lithos.2013.12.007
DO - 10.1016/j.lithos.2013.12.007
M3 - Article
SN - 0024-4937
VL - 190-191
SP - 292
EP - 312
JO - Lithos
JF - Lithos
ER -