Abstract
We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function - a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples - star-galaxy classification and proximity effects on object detection - are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.
Original language | English |
---|---|
Article number | 73 |
Number of pages | 14 |
Journal | Astrophysical Journal |
Volume | 801 |
Issue number | 2 |
Early online date | 4 Mar 2015 |
DOIs | |
Publication status | Published - 10 Mar 2015 |
Keywords
- methods: data analysis
- methods: numerical
- surveys
- techniques: image processing