Modeling the transfer function for the dark energy survey

C. Chang, M. T. Busha, R. H. Wechsler, A. Refregier, A. Amara, E. Rykoff, M. R. Becker, C. Bruderer, L. Gamper, B. Leistedt, H. Peiris, T. Abbott, F. B. Abdalla, E. Balbinot, M. Banerji, R. A. Bernstein, E. Bertin, D. Brooks, A. Carnero, S. DesaiL. N. Da Costa, C. E. Cunha, T. Eifler, A. E. Evrard, A. Fausti Neto, D. Gerdes, D. Gruen, D. James, K. Kuehn, M. A.G. Maia, M. Makler, R. Ogando, A. Plazas, E. Sanchez, B. Santiago, M. Schubnell, I. Sevilla-Noarbe, C. Smith, M. Soares-Santos, E. Suchyta, M. E.C. Swanson, G. Tarle, J. Zuntz

Research output: Contribution to journalArticlepeer-review


We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function - a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples - star-galaxy classification and proximity effects on object detection - are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.

Original languageEnglish
Article number73
Number of pages14
JournalAstrophysical Journal
Issue number2
Early online date4 Mar 2015
Publication statusPublished - 10 Mar 2015


  • methods: data analysis
  • methods: numerical
  • surveys
  • techniques: image processing


Dive into the research topics of 'Modeling the transfer function for the dark energy survey'. Together they form a unique fingerprint.

Cite this