Abstract
In this paper, we introduce a notion to be called k-wise uncorrelated random variables, which is similar but not identical to the so-called k-wise independent random variables in the literature. We show how to construct k-wise uncorrelated random variables by a simple procedure. The constructed random variables can be applied, e.g., to express the quartic polynomial (xTQx)2, where Q is an n×n positive semidefinite matrix, by a sum of fourth powered polynomial terms, known as Hilbert's identity. By virtue of the proposed construction, the number of required terms is no more than 2n4+n. This implies that it is possible to find a (2n4+n)-point distribution whose fourth moments tensor is exactly the symmetrization of Q⊗Q. Moreover, we prove that the number of required fourth powered polynomial terms to express (xTQx)2 is at least n(n+1)/2. The result is applied to prove that computing the matrix 2↦4 norm is NP-hard. Extensions of the results to complex random variables are discussed as well.
Original language | English |
---|---|
Pages (from-to) | 775-788 |
Journal | Mathematics of Operations Research |
Volume | 39 |
Issue number | 3 |
Early online date | 30 Oct 2013 |
DOIs | |
Publication status | Published - Aug 2014 |
Keywords
- cone of moments
- uncorrelated random variables
- Hilbert's identity
- matrix norm