Multidomain formulation of BEM analysis applied to large-scale polycrystalline materials

A. F. Galvis, R. Q. Rodriguez, P. Sollero, E. L. Alburquerque

Research output: Contribution to journalArticlepeer-review

Abstract

Polycrystalline structures are present on metal alloys. Therefore, it is necessary to understand and model the mechanical behavior of this media. Usually, this is accomplished by the use of different numerical methods. However, the analysis of polycrystalline materials leads to other type of problems, such as high computational requirements generated in order to get an efficient solution. In this work, the 2D polycrystalline structure is generated using an average grain size through the Voronoi tessellation method and discretized through simulations with random material, crystalline orientation and orthotropic behavior [Sfantos and Aliabadi (2007a)]. BEM discretization requires multidomain analysis and large-scale degrees of freedom [Katsikadelis (2002);Kane (1994)]. This technique demands a different strategy in order to get a faster response. Numerical examples were carried out to demonstrate the feasibility of the application of the method to largescale polycrystalline problems. Results were compared with the conventional BEM solution for several set of loads. The analysis of the structure is performed using the proposed anisotropic multidomain BEM formulation [Katsikadelis (2002);Kane (1994)].

Original languageEnglish
Pages (from-to)103-115
Number of pages13
JournalCMES - Computer Modeling in Engineering and Sciences
Volume96
Issue number2
DOIs
Publication statusPublished - 1 Dec 2013

Keywords

  • Multidomain Boundary Element Method
  • Polycrystalline Materials

Fingerprint

Dive into the research topics of 'Multidomain formulation of BEM analysis applied to large-scale polycrystalline materials'. Together they form a unique fingerprint.

Cite this