Non-Gaussianity and gravitational waves from quadratic and self-interacting curvaton

J. Fonseca, David Wands

Research output: Contribution to journalArticlepeer-review

97 Downloads (Pure)


In this paper we consider how non-Gaussianity of the primordial density perturbation and the amplitude of gravitational waves from inflation can be used to determine parameters of the curvaton scenario for the origin of structure. We show that in the simplest quadratic model, where the curvaton evolves as a free scalar field, measurement of the bispectrum relative to the power spectrum, fNL, and the tensor-to-scalar ratio can determine both the expectation value of the curvaton field during inflation and its dimensionless decay rate relative to the curvaton mass. We show how these predictions are altered by the introduction of self-interactions, in models where higher-order corrections are determined by a characteristic mass scale and discuss how additional information about primordial non-Gaussianity and scale dependence may constrain curvaton interactions.
Original languageEnglish
Pages (from-to)064025
Number of pages1
JournalPhysical Review D
Issue number6
Publication statusPublished - 17 Mar 2011


Dive into the research topics of 'Non-Gaussianity and gravitational waves from quadratic and self-interacting curvaton'. Together they form a unique fingerprint.

Cite this