Nonmonotonic short-time decay of the Loschmidt echo in quasi-one- dimensional systems

Arseni Goussev*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We study the short-time stability of quantum dynamics in quasi-one-dimensional systems with respect to small localized perturbations of the potential. To this end, we analytically and numerically address the decay of the Loschmidt echo (LE) during times that are short compared to the Ehrenfest time. We find that the LE is generally a nonmonotonic function of time and exhibits strongly pronounced minima and maxima at the instants when the corresponding classical particle traverses the perturbation region. We also show that, under general conditions, the envelope decay of the LE is well approximated by a Gaussian, and we derive explicit analytical formulas for the corresponding decay time. Finally, we demonstrate that the observed nonmonotonic nature of the LE decay is only pertinent to one-dimensional (and, more generally, quasi-one-dimensional) systems, and that the short-time decay of the LE can be monotonic in a higher number of dimensions.

Original languageEnglish
Article number056210
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Volume83
Issue number5
DOIs
Publication statusPublished - 16 May 2011

Fingerprint

Dive into the research topics of 'Nonmonotonic short-time decay of the Loschmidt echo in quasi-one- dimensional systems'. Together they form a unique fingerprint.

Cite this