Numerical investigation of microchannel heat sink with trefoil shape ribs

Sadiq Ali, Faraz Ahmad, Kareem Akhtar, Numan Habib, Muhammad Aamir, Khaled Giasin, Ana Vafadar, Daniel Yurievich Pimenov

Research output: Contribution to journalArticlepeer-review

35 Downloads (Pure)


The present study investigates the thermo-hydraulic characteristics of a microchannel sink with novel trefoil Shaped ribs. The motivation for this form of rib shape is taken from the design of lung alveoli that exchange oxygen and carbon dioxide. This study has been conducted numerically by using a code from the commercially available Fluent software. The trefoil shaped ribs were mounted on the centerline of different walls of the microchannel in three different configurations. These consisted of base wall trefoil ribs (MC-BWTR), sidewall trefoil ribs (MC-SWTR), all wall trefoil ribs (MC-AWTR) and smooth channel (MC-SC) having no ribs on its wall. The streamline distance between the ribs was kept constant at 0.4 mm, and the results were compared by using pressure drop (∆p), Nusselt number (Nu), thermal resistance (Rth) and thermal enhancement factor (η). The results indicated that the addition of trefoil ribs to any wall improved heat transfer characteristics at the expense of an increase in the friction factor. The trends of the pressure drop and heat transfer coefficient were the same, which indicated higher values for MC-AWTR followed by MC-SWTR and a lower value for MC-BWTR. In order to compare the thermal and hydraulic performance of all the configurations simultaneously, the overall performance was quantified in terms of the thermal enhancement factor, which was higher than one in each case, except for MC-AWTR, in 100 < Re < 200 regimes. The thermal enhancement factor in the ribbed channel was the highest for MC-SWTR followed by MC-BWTR, and it was the lowest for MC-AWTR. Moreover, the thermal enhancement factor increases with the Reynolds number (Re) for each case. This confirms that the increment in the Nusselt number with velocity is more significant than the pressure drop. The highest thermal enhancement factor of 1.6 was attained for MC-SWTR at Re = 1000, and the lowest value of 0.87 was achieved for MC-AWTR at Re = 100.
Original languageEnglish
Number of pages16
Issue number20
Publication statusPublished - 17 Oct 2021


  • microchannel heat sink
  • trefoil ribs
  • thermal enhancement
  • thermal resistance


Dive into the research topics of 'Numerical investigation of microchannel heat sink with trefoil shape ribs'. Together they form a unique fingerprint.

Cite this