Numerical simulations of stochastic inflation using importance sampling

Joseph H. P. Jackson, Hooshyar Assadullahi, Kazuya Koyama, Vincent Vennin, David Wands

Research output: Contribution to journalArticlepeer-review

47 Downloads (Pure)

Abstract

We show how importance sampling can be used to reconstruct the statistics of rare cosmological fluctuations in stochastic inflation. We have developed a publicly available package, PyFPT,[https://github.com/Jacks0nJ/PyFPT.] that solves the first-passage time problem of generic one-dimensional Langevin processes. In the stochastic-δ N formalism, these are related to the curvature perturbation at the end of inflation. We apply this method to quadratic inflation, where the existence of semi-analytical results allows us to benchmark our approach. We find excellent agreement within the estimated statistical error, both in the drift- and diffusion-dominated regimes. The computation takes at most a few hours on a single CPU, and can reach probability values corresponding to less than one Hubble patch per observable universe at the end of inflation. With direct sampling, this would take more than the age of the universe to simulate even with the best current supercomputers. As an application, we study how the presence of large-field boundaries might affect the tail of the probability distribution. We also find that non-perturbative deviations from Gaussianity are not always of the simple exponential type.
Original languageEnglish
Article number067
Number of pages32
JournalJournal of Cosmology and Astroparticle Physics
Volume2022
Issue number10
DOIs
Publication statusPublished - 21 Oct 2022

Keywords

  • inflation
  • Statistical sampling techniques
  • physics of the early universe
  • primordial black holes
  • UKRI
  • STFC
  • ST/S000550/1
  • ST/W001225/1
  • ST/T506345/1

Fingerprint

Dive into the research topics of 'Numerical simulations of stochastic inflation using importance sampling'. Together they form a unique fingerprint.

Cite this