Abstract
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10−21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 41 0+160−180 Mpc corresponding to a redshift z=0.09+0.03−0.04. In the source frame, the initial black hole masses are 3 6+ 5− 4 M⊙and 2 9+4−4 M⊙, and the final black hole mass is 6 2+4−4 M⊙, with 3.0+0.5−0.5 M⊙c 2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
Original language | English |
---|---|
Article number | 061102 |
Journal | Physical Review Letters |
Volume | 116 |
Issue number | 6 |
DOIs | |
Publication status | Published - 11 Feb 2016 |
Keywords
- RCUK
- STFC