Observational constraints on braneworld inflation: the effect of a Gauss-Bonnet term

S. Tsujikawa, M. Sami, Roy Maartens

Research output: Contribution to journalArticlepeer-review

150 Downloads (Pure)


High-energy modifications to general relativity introduce changes to the perturbations generated during inflation, and the latest high-precision cosmological data can be used to place constraints on such modified inflation models. Recently it was shown that Randall-Sundrum–type braneworld inflation leads to tighter constraints on quadratic and quartic potentials than in general relativity. We investigate how this changes with a Gauss-Bonnet correction term, which can be motivated by string theory. Randall-Sundrum models preserve the standard consistency relation between the tensor spectral index and the tensor-to-scalar ratio. The Gauss-Bonnet term breaks this relation, and also modifies the dynamics and perturbation amplitudes at high energies. We find that the Gauss-Bonnet term tends to soften the Randall-Sundrum constraints. The observational compatibility of the quadratic potential is strongly improved. For a broad range of energy scales, the quartic potential is rescued from marginal rejection. Steep inflation driven by an exponential potential is excluded in the Randall-Sundrum case, but the Gauss-Bonnet term leads to marginal compatibility for sufficient e-folds
Original languageEnglish
Pages (from-to)063525
Number of pages1
JournalPhysical Review D
Issue number6
Publication statusPublished - 22 Sept 2004


Dive into the research topics of 'Observational constraints on braneworld inflation: the effect of a Gauss-Bonnet term'. Together they form a unique fingerprint.

Cite this