Abstract
Purpose: The purpose of this paper is to construct a fuzzy logic model that acts as a decision support system to minimize inventory-related costs in the field of industrial maintenance. Achieving a balance between the unavailability and over-storage of spare parts is a problem with potentially significant consequences. That significance increases proportionally with the ever-increasing challenge of reducing overall cost. Either scenario can result in substantial financial losses because of the interruption of production or the costs of tied-up capital, also called the “solidification of capital.” Moreover, there is that additional problem of the expiry of parts on the shelf.
Design/methodology/approach: The proposed approach relies on inputs from experts with consideration for incompleteness and inaccuracy. Two levels of decision are considered simultaneously. The first is whether a part should be stored or ordered when needed. The second involves comparing suppliers with their batch-size offers based on user-determined criteria. A mathematical model is developed in parallel for validation.
Findings: The results indicate that the fuzzy logic approach is accurate and satisfactory for this application and that it is advantageous because of its limited sensitivity to the inaccuracy and/or incompleteness of data. In addition, the approach is practical because it requires minimal user effort.
Originality/value: To the best of the authors’ knowledge, the exploitation of fuzzy-logic altogether with limited sensitivity experts' inputs were never combined for the solution of this particular problem; however, this approach's positive impact is expected to be highly significant in solving a chronic problem in industry.
Design/methodology/approach: The proposed approach relies on inputs from experts with consideration for incompleteness and inaccuracy. Two levels of decision are considered simultaneously. The first is whether a part should be stored or ordered when needed. The second involves comparing suppliers with their batch-size offers based on user-determined criteria. A mathematical model is developed in parallel for validation.
Findings: The results indicate that the fuzzy logic approach is accurate and satisfactory for this application and that it is advantageous because of its limited sensitivity to the inaccuracy and/or incompleteness of data. In addition, the approach is practical because it requires minimal user effort.
Originality/value: To the best of the authors’ knowledge, the exploitation of fuzzy-logic altogether with limited sensitivity experts' inputs were never combined for the solution of this particular problem; however, this approach's positive impact is expected to be highly significant in solving a chronic problem in industry.
Original language | English |
---|---|
Pages (from-to) | 1020-1039 |
Number of pages | 20 |
Journal | International Journal of Quality & Reliability Management |
Volume | 39 |
Issue number | 4 |
Early online date | 31 May 2021 |
DOIs | |
Publication status | Published - 7 Mar 2022 |
Keywords
- fuzzy logic modeling
- decision support systems
- industrial maintenance
- cost optimization
- maintenance engineering