Abstract
Many Feed-in Tariff designs exist. This paper provides a framework to determine the optimal design choice through an efficient allocation of market price risk. Feed-in Tariffs (FiTs) incentivise the deployment of renewable energy technologies by subsidising remuneration and transferring market price risk from investors, through policymakers, to a counterparty. This counterparty is often the electricity consumer. Using Stackelberg game theory, we contextualise the application of different FiT policy designs that efficiently divide market price risk between investors and consumers, conditional on risk preferences and market conditions. Explicit consideration of policymaker/consumer risk burden has not been incorporated in FiT analyses to date. We present a simulation-based modelling framework to carry this out. Through an Irish case study, we find that commonly employed flat-rate FiTs are only optimal when policymaker risk aversion is extremely low whilst constant premium policies are only optimal when investor risk aversion is extremely low. When both policymakers and investors are risk averse, an intermediate division of risk is optimal. We provide evidence to suggest that the contextual application of many FiT structures is suboptimal, assuming both investors and policymakers are at least moderately risk averse. Efficient risk allocation in FiT design choice will be of increasing policy importance as renewables deployment grows.
Original language | English |
---|---|
Pages (from-to) | 59-74 |
Journal | Sustainable Energy, Grids and Networks |
Volume | 9 |
Early online date | 21 Dec 2016 |
DOIs | |
Publication status | Published - Mar 2017 |
Keywords
- Renewable Energy
- Feed-in Tariff
- Bi-level model
- Renewable Support Schemes
- Market Price Risk