Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity

Kasum Azim, Diane Angonin, Guillaume Marcy, Francesca Pieropan, Andrea Rivera, Vanessa Donega, Claudio Cantù, Gareth Williams, Benedikt Berninger, Arthur M. Butt, Olivier Raineteau

Research output: Contribution to journalArticlepeer-review

195 Downloads (Pure)


Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP), to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.
Original languageEnglish
Article numbere2000698
JournalPLoS Biology
Issue number3
Publication statusPublished - 28 Mar 2017


  • RCUK
  • BB/M029379/1


Dive into the research topics of 'Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity'. Together they form a unique fingerprint.

Cite this