Phylogenetic relationships elucidate colonization patterns in the intertidal grazers Osilinus Philippi, 1847 and Phorcus Risso, 1826 (Gastropoda: Trochidae) in the northeastern Atlantic Ocean and Mediterranean Sea

K. Donald, Joanne Preston, Suzanne T. Williams, D. Reid, D. Winter, R. Alvarez, B. Buge, S. Hawkins, J. Templado, H. Spencer

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Snails in the closely related trochid genera Phorcus Risso, 1826 and Osilinus Philippi, 1847 are ecologically important algal grazers in the intertidal zone of the northeastern Atlantic Ocean and Mediterranean Sea. Here we present the first complete molecular phylogeny for these genera, based on the nuclear 28S rRNA gene and the mitochondrial 16S rRNA and COI genes, and show that the current classification is erroneous. We recognize nine species in a single genus, Phorcus: estimated by BEAST analysis, this arose 30 (±10) Ma; it consists of two subgenera, Phorcus and Osilinus, which we estimate diverged 14 (±4.5) Ma. Osilinus kotschyi, from the Arabian and Red Seas, is not closely related and is tentatively referred to Priotrochus Fischer, 1879. Our phylogeny allows us to address biogeographical questions concerning the origins of the Mediterranean and Macaronesian species of this group. The former appear to have evolved from Atlantic ancestors that invaded the Mediterranean on several occasions after the Zanclean Flood, which ended the Messinian Salinity Crisis 5.3 Ma; whereas the latter arose from several colonizations of mainland Atlantic ancestors within the last 3 (±1.5) Ma.
    Original languageEnglish
    Pages (from-to)35-45
    Number of pages11
    JournalMolecular Phylogenetics and Evolution
    Volume62
    Issue number1
    DOIs
    Publication statusPublished - Jan 2012

    Fingerprint

    Dive into the research topics of 'Phylogenetic relationships elucidate colonization patterns in the intertidal grazers Osilinus Philippi, 1847 and Phorcus Risso, 1826 (Gastropoda: Trochidae) in the northeastern Atlantic Ocean and Mediterranean Sea'. Together they form a unique fingerprint.

    Cite this