Pinning effect on the band gap modulation of crystalline BexZn1-xO alloy films grown on Al2O3(0001)

Dae-Sung Park, James J. Mudd, Marc Walker, Aleksander Krupski, Djelloul Seghier, Nessa Fereshteh Saniee, Chel-Jong Choi, Chang-Ju Youn, Sean R. C. McMitchell, Chris F. McConville

    Research output: Contribution to journalArticlepeer-review

    269 Downloads (Pure)

    Abstract

    We have investigated the influence of Be concentration on the microstructure of BexZn1−xO ternary films (from x = 0 to 0.77), grown on Al2O3(0001) substrates using radio-frequency co-sputtering. With increasing Be concentration, the (0002) X-ray diffraction peak shows a systematic shift from 33.86° to 39.39°, and optical spectroscopy shows a blue-shift of the band gap from 3.24 to beyond 4.62 eV towards the deep UV regime, indicating that Be atoms are incorporated into the host ZnO lattice. During the band-gap modulation, structural fluctuations (e.g. phase separation and compositional fluctuation of Be) in the ternary films were observed along with a significant change in the mean grain size. X-ray photoelectron spectroscopy indicates higher concentrations of metallic Be states found in the film with the smaller grain size. Correlation between these two observations indicates that Be segregates to near grain boundaries. A model structure is proposed through simulation, where an increase in grain growth driving force dominates over the Be particle pinning effect. This leads to further coalescence of grains, reactivation of grain growth, and the uniform distribution of Be composition in the BexZn1−xO alloy films.
    Original languageEnglish
    Pages (from-to)2136-2143
    JournalCrystEngComm
    Volume16
    Issue number11
    Publication statusPublished - 28 Jan 2014

    Fingerprint

    Dive into the research topics of 'Pinning effect on the band gap modulation of crystalline BexZn1-xO alloy films grown on Al2O3(0001)'. Together they form a unique fingerprint.

    Cite this