Abstract

High-quality optical resonant cavities require low optical loss, typically on the scale of parts per million. However, unintended micron-scale contaminants on the resonator mirrors that absorb the light circulating in the cavity can deform the surface thermoelastically and thus increase losses by scattering light out of the resonant mode. The point absorber effect is a limiting factor in some high-power cavity experiments, for example, the Advanced LIGO gravitational-wave detector. In this Letter, we present a general approach to the point absorber effect from first principles and simulate its contribution to the increased scattering. The achievable circulating power in current and future gravitational-wave detectors is calculated statistically given different point absorber configurations. Our formulation is further confirmed experimentally in comparison with the scattered power in the arm cavity of Advanced LIGO measured by in situ photodiodes. The understanding presented here provides an important tool in the global effort to design future gravitational-wave detectors that support high optical power and thus reduce quantum noise.

Original languageEnglish
Article number241102
Number of pages7
JournalPhysical Review Letters
Volume127
Issue number24
Early online date7 Dec 2021
DOIs
Publication statusPublished - 10 Dec 2021

Fingerprint

Dive into the research topics of 'Point absorber limits to future gravitational-wave detectors'. Together they form a unique fingerprint.

Cite this