Abstract
Predation by free-living protozoa and rotifers was investigated as a possible mechanism for the removal of Cryptosporidium parvum oocysts in aquatic ecosystems including wastewater treatment plants. Free-living ciliated protozoa (Stylonychia mytilus, Paramecium caudatum and an unidentified wastewater wetland ciliate), an amoeba (Acanthamoeba culbertsoni) and rotifers, all commonly found in aquatic ecosystems, were exposed to varying doses of C. parvum oocysts. All organisms investigated ingested oocysts. Predation activity and rates of ingestion varied with predator species and prey density. Ciliated protozoa demonstrated greater predation activity than A. culbertsoni or rotifers when exposed to 2 x 10(5) oocyst/mL for up to 3 h. Greatest predation after 1 h exposure was observed in P. caudatum, the largest ciliate, with on average 1.9 oocysts/cell (range 0-9 oocysts/cell). Stylonychia mytilus and the wetland ciliate had a similar mean ingestion of around 0.3 oocysts/cell, with numbers internalised ranging from 0-3 oocysts/cell. Rotifers ingested on average 1.6 oocysts/individual (range 0-7 oocysts/individual) whilst amoebae ingested on average 1.8 oocysts/cell after 2 h exposure (up to 3 oocysts/cell). Grazing activity by P. caudatum was demonstrated at a variety of prey levels ranging from 9 to 9,000 oocysts. Numbers of oocysts internalised by Paramecium frequently exceeded the reported human infective dose of 30 oocysts. In general, numbers of internalised oocysts increased with incubation time of up to 20-30 min although the rate of accumulation was slower at lower dose levels. The significance of predation on the fate of Cryptosporidium oocysts in the environment is discussed.
Original language | English |
---|---|
Pages (from-to) | 73-83 |
Number of pages | 11 |
Journal | Water Science and Technology |
Volume | 47 |
Issue number | 3 |
Publication status | Published - Feb 2003 |