Predicting climate tipping as a noisy bifurcation: a review

J. Thompson, J. Sieber

Research output: Contribution to journalArticlepeer-review

252 Downloads (Pure)


There is currently much interest in examining climatic tipping points, to see if it is feasible to predict them in advance. Using techniques from bifurcation theory, recent work looks for a slowing down of the intrinsic transient responses, which is predicted to occur before an instability is encountered. This is done, for example, by determining the short-term autocorrelation coefficient ARC(1) in a sliding window of the time-series: this stability coefficient should increase to unity at tipping. Such studies have been made both on climatic computer models and on real paleoclimate data preceding ancient tipping events. The latter employ reconstituted time-series provided by ice cores, sediments, etc., and seek to establish whether the actual tipping could have been accurately predicted in advance. One such example is the end of the Younger Dryas event, about 11 500 years ago, when the Arctic warmed by 7°C in 50 yrs. A second gives an excellent prediction for the end of "greenhouse" Earth about 34 million years ago when the climate tipped from a tropical state into an icehouse state, using data from tropical Pacific sediment cores. This prediction science is very young, but some encouraging results are already being obtained. Future analyses will clearly need to embrace both real data from improved monitoring instruments, and simulation data generated from increasingly sophisticated predictive models.
Original languageEnglish
Pages (from-to)399
Number of pages1
JournalInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Issue number2
Publication statusPublished - 2011


Dive into the research topics of 'Predicting climate tipping as a noisy bifurcation: a review'. Together they form a unique fingerprint.

Cite this