TY - JOUR
T1 - Probability backflow for correlated quantum states
AU - Goussev, Arseni
PY - 2020/8/6
Y1 - 2020/8/6
N2 - In its original formulation, quantum backflow (QB) is an interference effect that manifests itself as a negative probability transfer for free-particle states comprised of plane waves with only positive momenta. Quantum reentry (QR) is another interference effect in which a wave packet expanding from a spatial region of its initial confinement partially returns to the region in the absence of any external forces. Here we show that both QB and QR are special cases of a more general classically forbidden probability flow for quantum states with certain position-momentum correlations. We further demonstrate that it is possible to construct correlated quantum states for which the amount of probability transferred in the “wrong” (classically impossible) direction exceeds the least upper bound on the corresponding probability transfer in the QB and QR problems, known as the Bracken-Melloy constant.
AB - In its original formulation, quantum backflow (QB) is an interference effect that manifests itself as a negative probability transfer for free-particle states comprised of plane waves with only positive momenta. Quantum reentry (QR) is another interference effect in which a wave packet expanding from a spatial region of its initial confinement partially returns to the region in the absence of any external forces. Here we show that both QB and QR are special cases of a more general classically forbidden probability flow for quantum states with certain position-momentum correlations. We further demonstrate that it is possible to construct correlated quantum states for which the amount of probability transferred in the “wrong” (classically impossible) direction exceeds the least upper bound on the corresponding probability transfer in the QB and QR problems, known as the Bracken-Melloy constant.
UR - https://link.aps.org/doi/10.1103/PhysRevResearch.2.033206
U2 - 10.1103/PhysRevResearch.2.033206
DO - 10.1103/PhysRevResearch.2.033206
M3 - Article
SN - 2643-1564
VL - 2
JO - Physical Review Research
JF - Physical Review Research
IS - 3
M1 - 033206
ER -