TY - JOUR
T1 - Prohibitin, a protein downregulated by androgens, represses androgen receptor activity
AU - Gamble, Simon
AU - Chotai, D
AU - Odontiadis, M
AU - Dart, D A
AU - Brooke, G N
AU - Powell, S M
AU - Reebye, V
AU - Varela-carver, A
AU - Kawano, Y
AU - Waxman, J
AU - Bevan, C L
PY - 2007/3/15
Y1 - 2007/3/15
N2 - Prohibitin (PHB) is a cell cycle regulatory protein, known to repress E2F1-mediated gene activation via recruitment of transcriptional regulatory factors such as retinoblastoma and histone deacetylase 1 (HDAC1). We previously identified PHB as a target protein of androgen signaling in prostate cancer cells and showed that downregulation of PHB is required for androgen-induced cell cycle entry in these cells. We now present evidence that PHB, which has 54% homology at the protein level to the oestrogen receptor corepressor REA (repressor of oestrogen receptor activity), can repress androgen receptor (AR)-mediated transcription and androgen-dependent cell growth. Depletion of endogenous PHB resulted in an increase in expression of the androgen-regulated prostate-specific antigen gene. The repression appears to be specific to androgen and closely related receptors, as it is also evident for the glucocorticoid and progesterone, but not oestrogen, receptors. In spite of interaction of PHB with HDAC1, HDAC activity is not required for this repression. Although AR and PHB could be co-immunoprecipitated, no direct interaction was detectable, suggesting that PHB forms part of a repressive complex with the AR. Competition with the co-activator SRC1 further suggests that formation of a complex with AR, PHB and other cofactors is the mechanism by which repression is achieved. It appears then that repression of AR activity is one mechanism by which PHB inhibits androgen-dependent growth of prostate cells. Further, this study implies that the AR itself could, by mediating downregulation of a corepressor, be involved in the progression of prostate tumours to the hormone refractory stage.
AB - Prohibitin (PHB) is a cell cycle regulatory protein, known to repress E2F1-mediated gene activation via recruitment of transcriptional regulatory factors such as retinoblastoma and histone deacetylase 1 (HDAC1). We previously identified PHB as a target protein of androgen signaling in prostate cancer cells and showed that downregulation of PHB is required for androgen-induced cell cycle entry in these cells. We now present evidence that PHB, which has 54% homology at the protein level to the oestrogen receptor corepressor REA (repressor of oestrogen receptor activity), can repress androgen receptor (AR)-mediated transcription and androgen-dependent cell growth. Depletion of endogenous PHB resulted in an increase in expression of the androgen-regulated prostate-specific antigen gene. The repression appears to be specific to androgen and closely related receptors, as it is also evident for the glucocorticoid and progesterone, but not oestrogen, receptors. In spite of interaction of PHB with HDAC1, HDAC activity is not required for this repression. Although AR and PHB could be co-immunoprecipitated, no direct interaction was detectable, suggesting that PHB forms part of a repressive complex with the AR. Competition with the co-activator SRC1 further suggests that formation of a complex with AR, PHB and other cofactors is the mechanism by which repression is achieved. It appears then that repression of AR activity is one mechanism by which PHB inhibits androgen-dependent growth of prostate cells. Further, this study implies that the AR itself could, by mediating downregulation of a corepressor, be involved in the progression of prostate tumours to the hormone refractory stage.
U2 - 10.1038/sj.onc.1209967
DO - 10.1038/sj.onc.1209967
M3 - Article
SN - 0950-9232
VL - 26
SP - 1757
EP - 1768
JO - Oncogene
JF - Oncogene
IS - 12
ER -