TY - JOUR
T1 - Quantification of human bone microarchitecture damage in press-fit femoral knee implantation using HR-pQCT and digital volume correlation
AU - Rapagna, Sophie
AU - Berahmani, Sanaz
AU - Wyers, Caroline
AU - van den Bergh, Joop
AU - Reynolds, Karen
AU - Tozzi, Gianluca
AU - Janssen, Dennis
AU - Perilli, Egon
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Primary press-fit fixation of femoral knee prostheses is obtained thanks to the inside dimensions of the implant being undersized with respect to the bone cuts created intra-operatively, dictated by a press-fit specified by the implant design. However, during prostheses press-fit implantation, high compressive and shear stresses at the implant-bone interface are generated which causes permanent bone damage. The extent of this damage is unknown, but it may influence the implant stability and be a contributing factor to aseptic loosening, a main cause of revisions for knee arthroplasty. The aim of this ex-vivo study was to quantify, using high-resolution peripheral quantitative computed tomography (HR-pQCT) imaging and Digital Volume Correlation (DVC), permanent bone deformation due to press-fit femoral knee implantation using a commonly used implant. Six human cadaveric distal femora were resected and imaged with HR-pQCT (60.7 µm/voxel, isotropic). Femurs were fitted with cementless femoral knee implants (Sigma PFC) and rescanned after implant removal. For each femur, permanent deformation was examined in the anterior, posterior-medial and posterior-lateral condyles for volumes of interest (VOIs) of 10 mm depth. The bone volume fraction (BV/TV) for the VOIs in pre- and post-implantation images was calculated, at increasing depth from the bone surface. DVC was applied on the VOIs pre- and post-implantation, to assess trabecular bone displacements and plastically accumulated strains. The “BV/TVpost/BV/TVpre ratio vs. depth” showed, consistently among the six femurs, three consecutive points of interest at increasing bone depth, indicating: bone removal (ratio<100%), compaction (ratio>100%) and no changes (ratio=100%). Accordingly, the trabecular bone displacement computed by DVC suggested bone compaction up to 2.6±0.8 mm in depth, with peak third principal strains of -162,100±55,000 µε (mean absolute error: 1,000-2,000 µε, SD: 200-500 µε), well above the yield strain of bone (7,000-10,000 µε). Combining 3D-imaging, at spatial resolutions obtainable with clinical HR-pQCT, and DVC, determines the extent of plastic deformation and accumulated compressive strains occurring within the bone due to femoral press-fit implantation. The methods and data presented can be used to compare different implants, implant surface coatings and press-fit values. These can also be used to advance and validate computational models by providing information about the bone-implant interface obtained experimentally. Future studies using these methods can assist in determining the influence of bone damage on implant stability and the subsequent osseointegration.
AB - Primary press-fit fixation of femoral knee prostheses is obtained thanks to the inside dimensions of the implant being undersized with respect to the bone cuts created intra-operatively, dictated by a press-fit specified by the implant design. However, during prostheses press-fit implantation, high compressive and shear stresses at the implant-bone interface are generated which causes permanent bone damage. The extent of this damage is unknown, but it may influence the implant stability and be a contributing factor to aseptic loosening, a main cause of revisions for knee arthroplasty. The aim of this ex-vivo study was to quantify, using high-resolution peripheral quantitative computed tomography (HR-pQCT) imaging and Digital Volume Correlation (DVC), permanent bone deformation due to press-fit femoral knee implantation using a commonly used implant. Six human cadaveric distal femora were resected and imaged with HR-pQCT (60.7 µm/voxel, isotropic). Femurs were fitted with cementless femoral knee implants (Sigma PFC) and rescanned after implant removal. For each femur, permanent deformation was examined in the anterior, posterior-medial and posterior-lateral condyles for volumes of interest (VOIs) of 10 mm depth. The bone volume fraction (BV/TV) for the VOIs in pre- and post-implantation images was calculated, at increasing depth from the bone surface. DVC was applied on the VOIs pre- and post-implantation, to assess trabecular bone displacements and plastically accumulated strains. The “BV/TVpost/BV/TVpre ratio vs. depth” showed, consistently among the six femurs, three consecutive points of interest at increasing bone depth, indicating: bone removal (ratio<100%), compaction (ratio>100%) and no changes (ratio=100%). Accordingly, the trabecular bone displacement computed by DVC suggested bone compaction up to 2.6±0.8 mm in depth, with peak third principal strains of -162,100±55,000 µε (mean absolute error: 1,000-2,000 µε, SD: 200-500 µε), well above the yield strain of bone (7,000-10,000 µε). Combining 3D-imaging, at spatial resolutions obtainable with clinical HR-pQCT, and DVC, determines the extent of plastic deformation and accumulated compressive strains occurring within the bone due to femoral press-fit implantation. The methods and data presented can be used to compare different implants, implant surface coatings and press-fit values. These can also be used to advance and validate computational models by providing information about the bone-implant interface obtained experimentally. Future studies using these methods can assist in determining the influence of bone damage on implant stability and the subsequent osseointegration.
U2 - 10.1016/j.jmbbm.2019.04.054
DO - 10.1016/j.jmbbm.2019.04.054
M3 - Article
SN - 1751-6161
VL - 97
SP - 278
EP - 287
JO - Journal of the Mechanical Behavior of Biomedical Materials
JF - Journal of the Mechanical Behavior of Biomedical Materials
ER -