Abstract
We present the results of a search for rapidly evolving transients in the Dark Energy Survey Supernova Programme. These events are characterized by fast light curve evolution (rise to peak in ≲10 d and exponential decline in ≲30 d after peak). We discovered 72 events, including 37 transients with a spectroscopic redshift from host galaxy spectral features. The 37 events increase the total number of rapid optical transients by more than factor of two. They are found at a wide range of redshifts (0.05<z<1.56) and peak brightnesses (−15.75>Mg>−22.25). The multiband photometry is well fit by a blackbody up to few weeks after peak. The events appear to be hot (T≈10000−30000 K) and large (R≈1014−2⋅1015 cm) at peak, and generally expand and cool in time, though some events show evidence for a receding photosphere with roughly constant temperature. Spectra taken around peak are dominated by a blue featureless continuum consistent with hot, optically thick ejecta. We compare our events with a previously suggested physical scenario involving shock breakout in an optically thick wind surrounding a core-collapse supernova (CCSNe), we conclude that current models for such a scenario might need an additional power source to describe the exponential decline. We find these transients tend to favor star-forming host galaxies, which could be consistent with a core-collapse origin. However, more detailed modeling of the light curves is necessary to determine their physical origin.
Original language | English |
---|---|
Pages (from-to) | 894-917 |
Number of pages | 24 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 481 |
Issue number | 1 |
Early online date | 29 Aug 2018 |
DOIs | |
Publication status | Published - 1 Nov 2018 |
Keywords
- astro-ph.HE
- RCUK
- STFC
- ST/P000398/1
Fingerprint
Dive into the research topics of 'Rapidly evolving transients in the Dark Energy Survey'. Together they form a unique fingerprint.Datasets
-
Data availability statement for 'Rapidly evolving transients in the Dark Energy Survey'.
Avila Perez, S. (Creator), D'Andrea, C. (Creator), Macaulay, E. (Creator), Nichol, B. (Creator) & Swann, E. (Creator), Oxford University Press, 1 Nov 2018
Dataset