Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood–brain barrier model exemplifies tight-junction integrity

Zaynah Maherally, Helen L. Fillmore, Sim Ling Tan, Suk Fei Tan, Samah A. Jassam, Friederike I. Quack, Kathryn E. Hatherell, Geoffrey J. Pilkington

Research output: Contribution to journalArticlepeer-review

193 Downloads (Pure)

Abstract

The blood–brain barrier (BBB) consists of endothelial cells, astrocytes, and pericytes embedded in basal lamina (BL). Most in vitro models use nonhuman, monolayer cultures for therapeutic-delivery studies, relying on transendothelial electrical resistance (TEER) measurements without other tight-junction (TJ) formation parameters. We aimed to develop reliable, reproducible, in vitro 3-dimensional (3D) models incorporating relevant human, in vivo cell types and BL proteins. The 3D BBB models were constructed with human brain endothelial cells, human astrocytes, and human brain pericytes in mono-, co-, and tricultures. TEER was measured in 3D models using a volt/ohmmeter and cellZscope. Influence of BL proteins—laminin, fibronectin, collagen type IV, agrin, and perlecan—on adhesion and TEER was assessed using an electric cell-substrate impedance–sensing system. TJ protein expression was assessed by Western blotting (WB) and immunocytochemistry (ICC). Perlecan (10 µg/ml) evoked unreportedly high, in vitro TEER values (1200 Ω) and the strongest adhesion. Coculturing endothelial cells with astrocytes yielded the greatest resistance over time. ICC and WB results correlated with resistance levels, with evidence of prominent occludin expression in cocultures. BL proteins exerted differential effects on TEER, whereas astrocytes in contact yielded higher TEER values and TJ expression.—Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Hatherell, K. E., Pilkington, G. J. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood–brain barrier model exemplifies tight-junction integrity.
Original languageEnglish
Pages (from-to)168-182
JournalFASEB Journal
Volume32
Issue number1
Early online date7 Sep 2017
DOIs
Publication statusPublished - Sep 2017

Fingerprint

Dive into the research topics of 'Real-time acquisition of transendothelial electrical resistance in an all-human, <i>in vitro</i>, 3-dimensional, blood–brain barrier model exemplifies tight-junction integrity'. Together they form a unique fingerprint.

Cite this