Real time object tracking with sparse prototypes

Dongxu Gao, Jiangtao Cao, Zhaojie Ju, Xiaofei Ji

Research output: Contribution to journalArticlepeer-review

172 Downloads (Pure)

Abstract

Sparse representation (compressive sampling) has achieved impressive results in object tracking by looking for the best candidate with minimum reconstruction error using the target template. However, it may fail in some circumstances such as illumination changes, scale changes, the object color is similar with the surrounding region, and occlusion etc., in addition, high computational cost is required due to numerous calculations for solving an l1 norm related minimization problems. In order to resolve above problems, a novel method is introduced by exploiting an accelerated proximal gradient approach which aims to make the tracker runs in real time; moreover, both classic principal component analysis algorithm and sparse representation schemes are adapted for learning effective observation model and reduces the influence of appearance change. Both qualitative and quantitative evaluation demonstrate that the proposed tracking algorithm has favorably better performance than several state-of-the-art trackers using challenging benchmark image sequences, and significantly reduces the computing cost.
Original languageEnglish
Pages (from-to)279-296
Journal International Journal of Signal Processing, Image Processing and Pattern Recognition
Volume8
Issue number4
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Real time object tracking with sparse prototypes'. Together they form a unique fingerprint.

Cite this