TY - JOUR
T1 - Relating pore fabric geometry to acoustic and permeability anisotropy in Crab Orchard Sandstone: a laboratory study using magnetic ferrofluid
AU - Benson, Philip
PY - 2003
Y1 - 2003
N2 - Pore fabric anisotropy is a common feature of many sedimentary rocks. In this paper we report results from a comparative study on the anisotropy of a porous sandstone (Crab Orchard) using anisotropy of magnetic susceptibility (AMS), acoustic wave velocity and fluid permeability techniques. Initially, we characterise the anisotropic pore fabric geometry by impregnating the sandstone with magnetic ferro-fluid and measuring its AMS. The results are used to guide subsequent measurements of the anisotropy of acoustic wave velocity and fluid permeability. These three independent measures of anisotropy are then directly compared. Results show strong positive correlation between the principal directions given from the AMS, velocity anisotropy and permeability anisotropy. Permeability parallel to the macroscopic crossbedding observed in the sandstone is 240% higher than that normal to it. P and S-wave velocity anisotropy and AMS show mean values of 19.1%, 4.8% and 3.8% respectively, reflecting the disparate physical properties measured.
AB - Pore fabric anisotropy is a common feature of many sedimentary rocks. In this paper we report results from a comparative study on the anisotropy of a porous sandstone (Crab Orchard) using anisotropy of magnetic susceptibility (AMS), acoustic wave velocity and fluid permeability techniques. Initially, we characterise the anisotropic pore fabric geometry by impregnating the sandstone with magnetic ferro-fluid and measuring its AMS. The results are used to guide subsequent measurements of the anisotropy of acoustic wave velocity and fluid permeability. These three independent measures of anisotropy are then directly compared. Results show strong positive correlation between the principal directions given from the AMS, velocity anisotropy and permeability anisotropy. Permeability parallel to the macroscopic crossbedding observed in the sandstone is 240% higher than that normal to it. P and S-wave velocity anisotropy and AMS show mean values of 19.1%, 4.8% and 3.8% respectively, reflecting the disparate physical properties measured.
U2 - 10.1029/2003GL017929
DO - 10.1029/2003GL017929
M3 - Article
SN - 0094-8276
VL - 30
SP - 1976
JO - Geophysical Research Letters
JF - Geophysical Research Letters
IS - 19
ER -