TY - JOUR
T1 - Remediation of contaminated lands in the Niger Delta, Nigeria
T2 - Prospects and challenges
AU - Zabbey, Nenibarini
AU - Sam, Kabari
AU - Onyebuchi, Adaugo Trinitas
N1 - Publisher Copyright:
© 2017
PY - 2017/5/15
Y1 - 2017/5/15
N2 - Contamination of the total environment (air, soil, water and biota) by crude oil has become a paramount interest in the Niger Delta region of Nigeria. Studies have revealed variable impacts of oil toxicity on the environment and exposed populations. The revelation gained much international attention in 2011 with the release of Environmental Assessment of Ogoniland report by the United Nations Environment Programme (UNEP). This has up scaled local and international pressures for urgent clean-up and restoration of degraded bio-resource rich environments of the Niger Delta, starting from Ogoniland. Previous remediation attempts in the area had failed due to erroneous operational conclusions (such as conclusions by oil industry operators that the Niger Delta soil is covered by a layer of clay and as such oil percolation remains within the top soil and makes remediation by enhanced natural attenuation (RENA) suitable for the region) and the adoption of incompatible and ineffective approaches (i.e. RENA) for the complex and dynamic environments. Perennial conflicts, poor regulatory oversights and incoherent standards are also challenges. Following UNEP recommendations, the Federal Government of Nigeria recently commissioned the clean-up and remediation of Ogoniland project; it would be novel and trend setting. While UNEP outlined some measures of contaminated land remediation, no specific approach was identified to be most effective for the Niger Delta region. Resolving the technical dilemma and identified social impediments is the key success driver of the above project. In this paper, we reviewed the socio-economic and ecological impacts of contaminated land in the Niger Delta region and the global state-of-the-art remediation approaches. We use coastal environment clean-up case studies to demonstrate the effectiveness of bioremediation (sometimes in combination with other technologies) for remediating most of the polluted sites in the Niger Delta. Bioremediation should primarily be the preferred option considering its low greenhouse gas and environmental footprints, and low-cost burden on the weak and overstretched economy of Nigeria.
AB - Contamination of the total environment (air, soil, water and biota) by crude oil has become a paramount interest in the Niger Delta region of Nigeria. Studies have revealed variable impacts of oil toxicity on the environment and exposed populations. The revelation gained much international attention in 2011 with the release of Environmental Assessment of Ogoniland report by the United Nations Environment Programme (UNEP). This has up scaled local and international pressures for urgent clean-up and restoration of degraded bio-resource rich environments of the Niger Delta, starting from Ogoniland. Previous remediation attempts in the area had failed due to erroneous operational conclusions (such as conclusions by oil industry operators that the Niger Delta soil is covered by a layer of clay and as such oil percolation remains within the top soil and makes remediation by enhanced natural attenuation (RENA) suitable for the region) and the adoption of incompatible and ineffective approaches (i.e. RENA) for the complex and dynamic environments. Perennial conflicts, poor regulatory oversights and incoherent standards are also challenges. Following UNEP recommendations, the Federal Government of Nigeria recently commissioned the clean-up and remediation of Ogoniland project; it would be novel and trend setting. While UNEP outlined some measures of contaminated land remediation, no specific approach was identified to be most effective for the Niger Delta region. Resolving the technical dilemma and identified social impediments is the key success driver of the above project. In this paper, we reviewed the socio-economic and ecological impacts of contaminated land in the Niger Delta region and the global state-of-the-art remediation approaches. We use coastal environment clean-up case studies to demonstrate the effectiveness of bioremediation (sometimes in combination with other technologies) for remediating most of the polluted sites in the Niger Delta. Bioremediation should primarily be the preferred option considering its low greenhouse gas and environmental footprints, and low-cost burden on the weak and overstretched economy of Nigeria.
KW - Coastal environment
KW - Contaminated land
KW - Niger Delta
KW - Remediation
UR - http://www.scopus.com/inward/record.url?scp=85012931020&partnerID=8YFLogxK
UR - https://dspace.lib.cranfield.ac.uk/
U2 - 10.1016/j.scitotenv.2017.02.075
DO - 10.1016/j.scitotenv.2017.02.075
M3 - Article
C2 - 28214111
AN - SCOPUS:85012931020
SN - 0048-9697
VL - 586
SP - 952
EP - 965
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -