TY - JOUR
T1 - Review article: A comprehensive review of datasets and methodologies employed to produce thunderstorm climatologies
AU - Hayward, Leah
AU - Whitworth, Malcolm
AU - Pepin, Nick
AU - Dorling, Steve
N1 - Publisher Copyright:
© 2020 Copernicus GmbH. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/9/16
Y1 - 2020/9/16
N2 - Thunderstorm and lightning climatological research is conducted with a view to increasing knowledge about the distribution of thunderstorm-related hazards and to gain an understanding of environmental factors increasing or decreasing their frequency. There are three main methodologies used in the construction of thunderstorm climatologies: Thunderstorm frequency, thunderstorm tracking or lightning flash density. These approaches utilise a wide variety of underpinning datasets and employ many different methods ranging from correlations with potential influencing factors and mapping the distribution of thunderstorm day frequencies to tracking individual thunderstorm cell movements. Meanwhile, lightning flash density climatologies are produced using lightning data alone, and these studies therefore follow a more standardised format. Whilst lightning flash density climatologies are primarily concerned with the occurrence of cloud-To-ground lightning, the occurrence of any form of lightning confirms the presence of a thunderstorm and can therefore be used in the compilation of a thunderstorm climatology. Regardless of approach, the choice of analysis method is heavily influenced by the coverage and quality (detection efficiency and location accuracy) of available datasets as well as by the controlling factors which are under investigation. The issues investigated must also reflect the needs of the end-use application to ensure that the results can be used effectively to reduce exposure to hazard, improve forecasting or enhance climatological understanding.
AB - Thunderstorm and lightning climatological research is conducted with a view to increasing knowledge about the distribution of thunderstorm-related hazards and to gain an understanding of environmental factors increasing or decreasing their frequency. There are three main methodologies used in the construction of thunderstorm climatologies: Thunderstorm frequency, thunderstorm tracking or lightning flash density. These approaches utilise a wide variety of underpinning datasets and employ many different methods ranging from correlations with potential influencing factors and mapping the distribution of thunderstorm day frequencies to tracking individual thunderstorm cell movements. Meanwhile, lightning flash density climatologies are produced using lightning data alone, and these studies therefore follow a more standardised format. Whilst lightning flash density climatologies are primarily concerned with the occurrence of cloud-To-ground lightning, the occurrence of any form of lightning confirms the presence of a thunderstorm and can therefore be used in the compilation of a thunderstorm climatology. Regardless of approach, the choice of analysis method is heavily influenced by the coverage and quality (detection efficiency and location accuracy) of available datasets as well as by the controlling factors which are under investigation. The issues investigated must also reflect the needs of the end-use application to ensure that the results can be used effectively to reduce exposure to hazard, improve forecasting or enhance climatological understanding.
UR - http://www.scopus.com/inward/record.url?scp=85092055591&partnerID=8YFLogxK
U2 - 10.5194/nhess-20-2463-2020
DO - 10.5194/nhess-20-2463-2020
M3 - Literature review
AN - SCOPUS:85092055591
SN - 1561-8633
VL - 20
SP - 2463
EP - 2482
JO - Natural Hazards and Earth System Sciences
JF - Natural Hazards and Earth System Sciences
IS - 9
ER -