RNA interference reveals that endogenous Xenopus MinK-related peptides govern mammalian K+ channel function in oocyte expression studies

A. Anantharam, Anthony Lewis, G. Panaghie, E. Gordon, Z. McCrossan, D. Lerner, G. Abbott

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The physiological properties of most ion channels are defined experimentally by functional expression of their pore-forming α subunits in Xenopus laevis oocytes. Here, we cloned a family ofXenopus KCNE genes that encode MinK-related peptide K+ channel β subunits (xMiRPs) and demonstrated their constitutive expression in oocytes. Electrophysiological analysis of xMiRP2 revealed that when overexpressed this gene modulates human cardiac K+ channel α subunits HERG (human ether-a-go-go-related gene) and KCNQ1 by suppressing HERG currents and removing the voltage dependence of KCNQ1 activation. The ability of endogenous levels of xMiRP2 to contribute to the biophysical attributes of overexpressed mammalian K+ channels in oocyte studies was assessed next. Injection of an xMiRP2 sequence-specific short interfering RNA (siRNA) oligo reduced endogenous xMiRP2 expression 5-fold, whereas a control siRNA oligo had no effect, indicating the effectiveness of the RNA interference technique in Xenopus oocytes. The functional effects of endogenous xMiRP2 silencing were tested using electrophysiological analysis of heterologously expressed HERG channels. The RNA interference-mediated reduction of endogenous xMiRP2 expression increased macroscopic HERG current as much as 10-fold depending on HERG cRNA concentration. The functional effects of human MiRP1 (hMiRP1)/HERG interaction were also affected by endogenous xMiRP2. At high HERG channel density, at which the effects of endogenous xMiRP2 are minimal, hMiRP1 reduced HERG current. At low HERG current density, hMiRP1 paradoxically up-regulated HERG current, a result consistent with hMiRP1 rescuing HERG from suppression by endogenous xMiRP2. Thus, endogenous Xenopus MiRP subunits contribute to the base-line properties of K+ channels like HERG in oocyte expression studies, which could explain expression level- and expression system-dependent variation in K+channel function.
    Original languageEnglish
    Pages (from-to)11739-11745
    Number of pages7
    JournalThe Journal of Biological Chemistry
    Volume278
    Issue number14
    DOIs
    Publication statusPublished - 2003

    Fingerprint

    Dive into the research topics of 'RNA interference reveals that endogenous Xenopus MinK-related peptides govern mammalian K+ channel function in oocyte expression studies'. Together they form a unique fingerprint.

    Cite this