TY - JOUR
T1 - SANTORY
T2 - SANTORini’s Seafloor Volcanic ObservatorY
AU - Nomikou, Paraskevi
AU - Polymenakou, Paraskevi N.
AU - Rizzo, Andrea Luca
AU - Petersen, Sven
AU - Hannington, Mark
AU - Kilias, Stephanos Pantelis
AU - Papanikolaou, Dimitris
AU - Escartin, Javier
AU - Karantzalos, Konstantinos
AU - Mertzimekis, Theodoros J.
AU - Antoniou, Varvara
AU - Krokos, Mel
AU - Grammatikopoulos, Lazaros
AU - Italiano, Francesco
AU - Caruso, Cinzia Giuseppina
AU - Lazzaro, Gianluca
AU - Longo, Manfredi
AU - Sciré Scappuzzo, Sergio
AU - D’Alessandro, Walter
AU - Grassa, Fausto
AU - Bejelou, Konstantina
AU - Lampridou, Danai
AU - Katsigera, Anna
AU - Dura, Anne
N1 - Funding Information:
The SANTORY program is funded by the Hellenic Foundation for Research and Innovation (HFRI) (Grant Number 1850) in the framework of the “1st Announcement of Research Projects HFRI for Faculty Members and researchers and the supply of high-value research equipment” with a duration of three years. TM acknowledges support by RAMONES (EU H2020 Pathfinder Grant No 101017808). We thank William W. Chadwick and Tim Druitt for their comments and feedback on an earlier version of the paper. We thank the Chief Editor PF for handling and revising the manuscript, PM and a reviewer for suggestions that greatly improved the manuscript.
Publisher Copyright:
Copyright © 2022 Nomikou, Polymenakou, Rizzo, Petersen, Hannington, Kilias, Papanikolaou, Escartin, Karantzalos, Mertzimekis, Antoniou, Krokos, Grammatikopoulos, Italiano, Caruso, Lazzaro, Longo, Sciré Scappuzzo, D’Alessandro, Grassa, Bejelou, Lampridou, Katsigera and Dura.
PY - 2022/3/31
Y1 - 2022/3/31
N2 - Submarine hydrothermal systems along active volcanic ridges and arcs are highly dynamic, responding to both oceanographic (e.g., currents, tides) and deep-seated geological forcing (e.g., magma eruption, seismicity, hydrothermalism, and crustal deformation, etc.). In particular, volcanic and hydrothermal activity may also pose profoundly negative societal impacts (tsunamis, the release of climate-relevant gases and toxic metal(loid)s). These risks are particularly significant in shallow (<1000m) coastal environments, as demonstrated by the January 2022 submarine paroxysmal eruption by the Hunga Tonga-Hunga Ha’apai Volcano that destroyed part of the island, and the October 2011 submarine eruption of El Hierro (Canary Islands) that caused vigorous upwelling, floating lava bombs, and natural seawater acidification. Volcanic hazards may be posed by the Kolumbo submarine volcano, which is part of the subduction-related Hellenic Volcanic Arc at the intersection between the Eurasian and African tectonic plates. There, the Kolumbo submarine volcano, 7 km NE of Santorini and part of Santorini’s volcanic complex, hosts an active hydrothermal vent field (HVF) on its crater floor (~500m b.s.l.), which degasses boiling CO2–dominated fluids at high temperatures (~265°C) with a clear mantle signature. Kolumbo’s HVF hosts actively forming seafloor massive sulfide deposits with high contents of potentially toxic, volatile metal(loid)s (As, Sb, Pb, Ag, Hg, and Tl). The proximity to highly populated/tourist areas at Santorini poses significant risks. However, we have limited knowledge of the potential impacts of this type of magmatic and hydrothermal activity, including those from magmatic gases and seismicity. To better evaluate such risks the activity of the submarine system must be continuously monitored with multidisciplinary and high resolution instrumentation as part of an in-situ observatory supported by discrete sampling and measurements. This paper is a design study that describes a new long-term seafloor observatory that will be installed within the Kolumbo volcano, including cutting-edge and innovative marine-technology that integrates hyperspectral imaging, temperature sensors, a radiation spectrometer, fluid/gas samplers, and pressure gauges. These instruments will be integrated into a hazard monitoring platform aimed at identifying the precursors of potentially disastrous explosive volcanic eruptions, earthquakes, landslides of the hydrothermally weakened volcanic edifice and the release of potentially toxic elements into the water column.
AB - Submarine hydrothermal systems along active volcanic ridges and arcs are highly dynamic, responding to both oceanographic (e.g., currents, tides) and deep-seated geological forcing (e.g., magma eruption, seismicity, hydrothermalism, and crustal deformation, etc.). In particular, volcanic and hydrothermal activity may also pose profoundly negative societal impacts (tsunamis, the release of climate-relevant gases and toxic metal(loid)s). These risks are particularly significant in shallow (<1000m) coastal environments, as demonstrated by the January 2022 submarine paroxysmal eruption by the Hunga Tonga-Hunga Ha’apai Volcano that destroyed part of the island, and the October 2011 submarine eruption of El Hierro (Canary Islands) that caused vigorous upwelling, floating lava bombs, and natural seawater acidification. Volcanic hazards may be posed by the Kolumbo submarine volcano, which is part of the subduction-related Hellenic Volcanic Arc at the intersection between the Eurasian and African tectonic plates. There, the Kolumbo submarine volcano, 7 km NE of Santorini and part of Santorini’s volcanic complex, hosts an active hydrothermal vent field (HVF) on its crater floor (~500m b.s.l.), which degasses boiling CO2–dominated fluids at high temperatures (~265°C) with a clear mantle signature. Kolumbo’s HVF hosts actively forming seafloor massive sulfide deposits with high contents of potentially toxic, volatile metal(loid)s (As, Sb, Pb, Ag, Hg, and Tl). The proximity to highly populated/tourist areas at Santorini poses significant risks. However, we have limited knowledge of the potential impacts of this type of magmatic and hydrothermal activity, including those from magmatic gases and seismicity. To better evaluate such risks the activity of the submarine system must be continuously monitored with multidisciplinary and high resolution instrumentation as part of an in-situ observatory supported by discrete sampling and measurements. This paper is a design study that describes a new long-term seafloor observatory that will be installed within the Kolumbo volcano, including cutting-edge and innovative marine-technology that integrates hyperspectral imaging, temperature sensors, a radiation spectrometer, fluid/gas samplers, and pressure gauges. These instruments will be integrated into a hazard monitoring platform aimed at identifying the precursors of potentially disastrous explosive volcanic eruptions, earthquakes, landslides of the hydrothermally weakened volcanic edifice and the release of potentially toxic elements into the water column.
KW - hydrothermal vents
KW - Kolumbo
KW - marine technological innovation
KW - monitoring
KW - Santorini
KW - submarine volcano
UR - http://www.scopus.com/inward/record.url?scp=85128503932&partnerID=8YFLogxK
U2 - 10.3389/fmars.2022.796376
DO - 10.3389/fmars.2022.796376
M3 - Article
AN - SCOPUS:85128503932
SN - 2296-7745
VL - 9
JO - Frontiers in Marine Science
JF - Frontiers in Marine Science
M1 - 796376
ER -