SDSS-IV MaNGA: Properties of galaxies with kinematically decoupled stellar and gaseous components

Yifei Jin, Yanmei Chen, Yong Shi, C. A. Tremonti, M. A. Bershady, M. Merrifield, E. Emsellem, Hai Fu, D. Wake, K. Bundy, Lihwai Lin, M. Argudo-Fernandez, Song Huang, D. V. Stark, T. Storchi-Bergmann, D. Bizyaev, J. Brownstein, J. Chisholm, Qi Guo, Lei HaoJian Hu, Cheng Li, Ran Li, K. L. Masters, E. Malanushenko, Kaike Pan, R. A. Riffel, A. Roman-Lopes, A. Simmons, D. Thomas, Lan Wang, K. Westfall, Renbin Yan

Research output: Contribution to journalArticlepeer-review

79 Downloads (Pure)

Abstract

We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, i.e. M*, SFR and sSFR. According to their sSFR, we further classify these 66 galaxies into three categories, 10 star-forming, 26 "Green Valley" and 30 quiescent ones. The properties of different types of kinematically misaligned galaxies are different in that the star-forming ones have positive gradient in D4000 and higher gas-phase metallicity, while the green valley/quiescent ones have negative D4000 gradients and lower gas-phase metallicity on average. There is evidence that all types of the kinematically misaligned galaxies tend to live in more isolated environment. Based on all these observational results, we propose a scenario for the formation of star forming galaxies with kinematically misaligned gas and stars - the progenitor accretes misaligned gas from a gas-rich dwarf or cosmic web, the cancellation of angular momentum from gas-gas collisions between the pre-existing gas and the accreted gas largely accelerates gas inflow, leading to fast centrally-concentrated star-formation. The higher metallicity is due to enrichment from this star formation. For the kinematically misaligned green valley and quiescent galaxies, they might be formed through gas-poor progenitors accreting kinematically misaligned gas from satellites which are smaller in mass.
Original languageEnglish
Pages (from-to)913-926
JournalMonthly Notices of the Royal Astronomical Society
Volume463
Issue number1
Early online date17 Aug 2016
DOIs
Publication statusPublished - 21 Nov 2016

Keywords

  • astro-ph.GA

Fingerprint

Dive into the research topics of 'SDSS-IV MaNGA: Properties of galaxies with kinematically decoupled stellar and gaseous components'. Together they form a unique fingerprint.

Cite this